IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7874d10.1038_s41586-021-03811-w.html
   My bibliography  Save this article

A metabolic function of the hippocampal sharp wave-ripple

Author

Listed:
  • David Tingley

    (New York University)

  • Kathryn McClain

    (New York University)

  • Ekin Kaya

    (New York University
    Bogazici University)

  • Jordan Carpenter

    (New York University
    Norwegian University of Science and Technology)

  • György Buzsáki

    (New York University
    New York University
    New York University
    New York University)

Abstract

The hippocampus has previously been implicated in both cognitive and endocrine functions1–15. We simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats to identify an activity pattern that may link these disparate functions of the hippocampus. Here we report that clusters of sharp wave-ripples recorded from the hippocampus reliably predicted a decrease in peripheral glucose concentrations within about 10 min. This correlation was not dependent on circadian, ultradian or meal-triggered fluctuations, could be mimicked with optogenetically induced ripples in the hippocampus (but not in the parietal cortex) and was attenuated to chance levels by pharmacogenetically suppressing activity of the lateral septum, which is the major conduit between the hippocampus and the hypothalamus. Our findings demonstrate that a function of the sharp wave-ripple is to modulate peripheral glucose homeostasis, and offer a mechanism for the link between sleep disruption and blood glucose dysregulation in type 2 diabetes16–18.

Suggested Citation

  • David Tingley & Kathryn McClain & Ekin Kaya & Jordan Carpenter & György Buzsáki, 2021. "A metabolic function of the hippocampal sharp wave-ripple," Nature, Nature, vol. 597(7874), pages 82-86, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7874:d:10.1038_s41586-021-03811-w
    DOI: 10.1038/s41586-021-03811-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03811-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03811-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Huang & Jeffrey B. Wang & Jonathon J. Parker & Rajat Shivacharan & Rayhan A. Lal & Casey H. Halpern, 2023. "Spectro-spatial features in distributed human intracranial activity proactively encode peripheral metabolic activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7874:d:10.1038_s41586-021-03811-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.