IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v596y2021i7873d10.1038_s41586-021-03851-2.html
   My bibliography  Save this article

Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis

Author

Listed:
  • Ranen Aviner

    (University of California, San Francisco
    Stanford University)

  • Kathy H. Li

    (University of California, San Francisco)

  • Judith Frydman

    (Stanford University)

  • Raul Andino

    (University of California, San Francisco)

Abstract

Viral pathogens are an ongoing threat to public health worldwide. Analysing their dependence on host biosynthetic pathways could lead to effective antiviral therapies1. Here we integrate proteomic analyses of polysomes with functional genomics and pharmacological interventions to define how enteroviruses and flaviviruses remodel host polysomes to synthesize viral proteins and disable host protein production. We find that infection with polio, dengue or Zika virus markedly modifies polysome composition, without major changes to core ribosome stoichiometry. These viruses use different strategies to evict a common set of translation initiation and RNA surveillance factors from polysomes while recruiting host machineries that are specifically required for viral biogenesis. Targeting these specialized viral polysomes could provide a new approach for antiviral interventions. For example, we find that both Zika and dengue use the collagen proline hydroxylation machinery to mediate cotranslational modification of conserved proline residues in the viral polyprotein. Genetic or pharmacological inhibition of proline hydroxylation impairs nascent viral polyprotein folding and induces its aggregation and degradation. Notably, such interventions prevent viral polysome remodelling and lower virus production. Our findings delineate the modular nature of polysome specialization at the virus–host interface and establish a powerful strategy to identify targets for selective antiviral interventions.

Suggested Citation

  • Ranen Aviner & Kathy H. Li & Judith Frydman & Raul Andino, 2021. "Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis," Nature, Nature, vol. 596(7873), pages 558-564, August.
  • Handle: RePEc:nat:nature:v:596:y:2021:i:7873:d:10.1038_s41586-021-03851-2
    DOI: 10.1038/s41586-021-03851-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03851-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03851-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxia Huang & Qinyu Peng & Xu Tian & Cancan Chen & Xuanfeng Zhu & Changbai Huang & Zhiting Huo & Yang Liu & Chao Yang & Chao Liu & Ping Zhang, 2024. "Nuclear membrane protein SUN2 promotes replication of flaviviruses through modulating cytoskeleton reorganization mediated by NS1," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7873:d:10.1038_s41586-021-03851-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.