IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v596y2021i7871d10.1038_s41586-021-03715-9.html
   My bibliography  Save this article

Direct imaging of single-molecule electrochemical reactions in solution

Author

Listed:
  • Jinrun Dong

    (Zhejiang University)

  • Yuxian Lu

    (Zhejiang University)

  • Yang Xu

    (Zhejiang University)

  • Fanfan Chen

    (Zhejiang University)

  • Jinmei Yang

    (Zhejiang University)

  • Yuang Chen

    (Zhejiang University)

  • Jiandong Feng

    (Zhejiang University)

Abstract

Chemical reactions tend to be conceptualized in terms of individual molecules transforming into products, but are usually observed in experiments that probe the average behaviour of the ensemble. Single-molecule methods move beyond ensemble averages and reveal the statistical distribution of reaction positions, pathways and dynamics1–3. This has been shown with optical traps and scanning probe microscopy manipulating and observing individual reactions at defined locations with high spatial resolution4,5, and with modern optical methods using ultrasensitive photodetectors3,6,7 that enable high-throughput single-molecule measurements. However, effective probing of single-molecule solution chemistry remains challenging. Here we demonstrate optical imaging of single-molecule electrochemical reactions7 in aqueous solution and its use for super-resolution microscopy. The method utilizes a chemiluminescent reaction involving a ruthenium complex electrochemically generated at an electrode8, which ensures minimal background signal. This allows us to directly capture single photons of the electrochemiluminescence of individual reactions, and to develop super-resolved electrochemiluminescence microscopy for imaging the adhesion dynamics of live cells with high spatiotemporal resolution. We anticipate that our method will advance the fundamental understanding of electrochemical reactions and prove useful for bioassays and cell-imaging applications.

Suggested Citation

  • Jinrun Dong & Yuxian Lu & Yang Xu & Fanfan Chen & Jinmei Yang & Yuang Chen & Jiandong Feng, 2021. "Direct imaging of single-molecule electrochemical reactions in solution," Nature, Nature, vol. 596(7871), pages 244-249, August.
  • Handle: RePEc:nat:nature:v:596:y:2021:i:7871:d:10.1038_s41586-021-03715-9
    DOI: 10.1038/s41586-021-03715-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03715-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03715-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziqing Zhang & Jinrun Dong & Yibo Yang & Yuan Zhou & Yuang Chen & Yang Xu & Jiandong Feng, 2023. "Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yanfeng Fang & Hong Yang & Yuhua Hou & Wang Li & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Liang Huang & Qiong Liu & Weiwei Wu & Ge Gao & Xiliang Zheng & Jin Wang & Shaojun Dong, 2023. "Identifying the active sites in unequal iron-nitrogen single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7871:d:10.1038_s41586-021-03715-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.