Author
Listed:
- C. D. Beidler
(Max-Planck-Institut für Plasmaphysik)
- H. M. Smith
(Max-Planck-Institut für Plasmaphysik)
- A. Alonso
(CIEMAT)
- T. Andreeva
(Max-Planck-Institut für Plasmaphysik)
- J. Baldzuhn
(Max-Planck-Institut für Plasmaphysik)
- M. N. A. Beurskens
(Max-Planck-Institut für Plasmaphysik)
- M. Borchardt
(Max-Planck-Institut für Plasmaphysik)
- S. A. Bozhenkov
(Max-Planck-Institut für Plasmaphysik)
- K. J. Brunner
(Max-Planck-Institut für Plasmaphysik)
- H. Damm
(Max-Planck-Institut für Plasmaphysik)
- M. Drevlak
(Max-Planck-Institut für Plasmaphysik)
- O. P. Ford
(Max-Planck-Institut für Plasmaphysik)
- G. Fuchert
(Max-Planck-Institut für Plasmaphysik)
- J. Geiger
(Max-Planck-Institut für Plasmaphysik)
- P. Helander
(Max-Planck-Institut für Plasmaphysik)
- U. Hergenhahn
(Max-Planck-Institut für Plasmaphysik
Fritz-Haber-Institut der Max-Planck-Gesellschaft)
- M. Hirsch
(Max-Planck-Institut für Plasmaphysik)
- U. Höfel
(Max-Planck-Institut für Plasmaphysik)
- Ye. O. Kazakov
(École royale militaire/Koninklijke Militaire School (ERM/KMS))
- R. Kleiber
(Max-Planck-Institut für Plasmaphysik)
- M. Krychowiak
(Max-Planck-Institut für Plasmaphysik)
- S. Kwak
(Max-Planck-Institut für Plasmaphysik)
- A. Langenberg
(Max-Planck-Institut für Plasmaphysik)
- H. P. Laqua
(Max-Planck-Institut für Plasmaphysik)
- U. Neuner
(Max-Planck-Institut für Plasmaphysik)
- N. A. Pablant
(Princeton Plasma Physics Laboratory)
- E. Pasch
(Max-Planck-Institut für Plasmaphysik)
- A. Pavone
(Max-Planck-Institut für Plasmaphysik)
- T. S. Pedersen
(Max-Planck-Institut für Plasmaphysik)
- K. Rahbarnia
(Max-Planck-Institut für Plasmaphysik)
- J. Schilling
(Max-Planck-Institut für Plasmaphysik)
- E. R. Scott
(Max-Planck-Institut für Plasmaphysik)
- T. Stange
(Max-Planck-Institut für Plasmaphysik)
- J. Svensson
(Max-Planck-Institut für Plasmaphysik)
- H. Thomsen
(Max-Planck-Institut für Plasmaphysik)
- Y. Turkin
(Max-Planck-Institut für Plasmaphysik)
- F. Warmer
(Max-Planck-Institut für Plasmaphysik)
- R. C. Wolf
(Max-Planck-Institut für Plasmaphysik)
- D. Zhang
(Max-Planck-Institut für Plasmaphysik)
Abstract
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.
Suggested Citation
C. D. Beidler & H. M. Smith & A. Alonso & T. Andreeva & J. Baldzuhn & M. N. A. Beurskens & M. Borchardt & S. A. Bozhenkov & K. J. Brunner & H. Damm & M. Drevlak & O. P. Ford & G. Fuchert & J. Geiger &, 2021.
"Demonstration of reduced neoclassical energy transport in Wendelstein 7-X,"
Nature, Nature, vol. 596(7871), pages 221-226, August.
Handle:
RePEc:nat:nature:v:596:y:2021:i:7871:d:10.1038_s41586-021-03687-w
DOI: 10.1038/s41586-021-03687-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Palermo, Iole & Alguacil, Javier & Pablo Catalán, Juan & Fernández-Berceruelo, Iván & Lion, Jorrit & Ángel Noguerón Valiente, Jose & Sosa, David & Rapisarda, David & Urgorri, Fernando R. & Warmer, Fel, 2024.
"Challenges towards an acceleration in stellarator reactors engineering: The dual coolant lithium–lead breeding blanket helical-axis advanced stellarator case,"
Energy, Elsevier, vol. 289(C).
- SeongMoo Yang & Jong-Kyu Park & YoungMu Jeon & Nikolas C. Logan & Jaehyun Lee & Qiming Hu & JongHa Lee & SangKyeun Kim & Jaewook Kim & Hyungho Lee & Yong-Su Na & Taik Soo Hahm & Gyungjin Choi & Joseph, 2024.
"Tailoring tokamak error fields to control plasma instabilities and transport,"
Nature Communications, Nature, vol. 15(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7871:d:10.1038_s41586-021-03687-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.