IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7868d10.1038_s41586-021-03662-5.html
   My bibliography  Save this article

Phase separation drives aberrant chromatin looping and cancer development

Author

Listed:
  • Jeong Hyun Ahn

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Eric S. Davis

    (University of North Carolina at Chapel Hill)

  • Timothy A. Daugird

    (University of North Carolina at Chapel Hill School of Medicine)

  • Shuai Zhao

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Ivana Yoseli Quiroga

    (University of North Carolina at Chapel Hill)

  • Hidetaka Uryu

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Jie Li

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill)

  • Aaron J. Storey

    (University of Arkansas for Medical Sciences)

  • Yi-Hsuan Tsai

    (University of North Carolina at Chapel Hill School of Medicine)

  • Daniel P. Keeley

    (University of North Carolina at Chapel Hill)

  • Samuel G. Mackintosh

    (University of Arkansas for Medical Sciences)

  • Ricky D. Edmondson

    (University of Arkansas for Medical Sciences)

  • Stephanie D. Byrum

    (University of Arkansas for Medical Sciences)

  • Ling Cai

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine)

  • Alan J. Tackett

    (University of Arkansas for Medical Sciences)

  • Deyou Zheng

    (and Neuroscience, Albert Einstein College of Medicine)

  • Wesley R. Legant

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina, Chapel Hill, and North Carolina State University)

  • Douglas H. Phanstiel

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill School of Medicine)

  • Gang Greg Wang

    (University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill School of Medicine
    University of North Carolina at Chapel Hill)

Abstract

The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR—tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98–HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid–liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98–HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad ‘super-enhancer’-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98–HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4–7, this mechanism can potentially be generalized to many malignant and pathological settings.

Suggested Citation

  • Jeong Hyun Ahn & Eric S. Davis & Timothy A. Daugird & Shuai Zhao & Ivana Yoseli Quiroga & Hidetaka Uryu & Jie Li & Aaron J. Storey & Yi-Hsuan Tsai & Daniel P. Keeley & Samuel G. Mackintosh & Ricky D. , 2021. "Phase separation drives aberrant chromatin looping and cancer development," Nature, Nature, vol. 595(7868), pages 591-595, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7868:d:10.1038_s41586-021-03662-5
    DOI: 10.1038/s41586-021-03662-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03662-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03662-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain Ibáñez de Opakua & Christian F. Pantoja & Maria-Sol Cima-Omori & Christian Dienemann & Markus Zweckstetter, 2024. "Impact of distinct FG nucleoporin repeats on Nup98 self-association," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Rui Chen & Xinyao Shi & Xiangrui Yao & Tong Gao & Guangyu Huang & Duo Ning & Zemin Cao & Youxin Xu & Weizheng Liang & Simon Zhongyuan Tian & Qionghua Zhu & Liang Fang & Meizhen Zheng & Yuhui Hu & Huan, 2024. "Specific multivalent molecules boost CRISPR-mediated transcriptional activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xiuxiao Tang & Pengguihang Zeng & Kezhi Liu & Li Qing & Yifei Sun & Xinyi Liu & Lizi Lu & Chao Wei & Jia Wang & Shaoshuai Jiang & Jun Sun & Wakam Chang & Haopeng Yu & Hebing Chen & Jiaguo Zhou & Cheng, 2024. "The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Swarnendu Tripathi & Hazheen K. Shirnekhi & Scott D. Gorman & Bappaditya Chandra & David W. Baggett & Cheon-Gil Park & Ramiz Somjee & Benjamin Lang & Seyed Mohammad Hadi Hosseini & Brittany J. Pioso &, 2023. "Defining the condensate landscape of fusion oncoproteins," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    5. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Ruixue Xu & Lirong Lin & Zhiwei Jiao & Rui Liang & Yazhen Guo & Yixin Zhang & Xiaoxu Shang & Yuezhou Wang & Xu Wang & Luming Yao & Shengfa Liu & Xianming Deng & Jing Yuan & Xin-zhuan Su & Jian Li, 2024. "Deaggregation of mutant Plasmodium yoelii de-ubiquitinase UBP1 alters MDR1 localization to confer multidrug resistance," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yong Ryoul Kim & Jaegeon Joo & Hee Jung Lee & Chaelim Kim & Ju-Chan Park & Young Suk Yu & Chang Rok Kim & Do Hui Lee & Joowon Cha & Hyemin Kwon & Kimberley M. Hanssen & Thomas G. P. Grünewald & Murim , 2024. "Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Di Yu & Yingying Liang & Claudia Kim & Anbalagan Jaganathan & Donglei Ji & Xinye Han & Xuelan Yang & Yanjie Jia & Ruirui Gu & Chunyu Wang & Qiang Zhang & Ka Lung Cheung & Ming-Ming Zhou & Lei Zeng, 2023. "Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7868:d:10.1038_s41586-021-03662-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.