IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v594y2021i7863d10.1038_s41586-021-03613-0.html
   My bibliography  Save this article

Gating and modulation of a hetero-octameric AMPA glutamate receptor

Author

Listed:
  • Danyang Zhang

    (MRC Laboratory of Molecular Biology)

  • Jake F. Watson

    (MRC Laboratory of Molecular Biology
    IST Austria)

  • Peter M. Matthews

    (MRC Laboratory of Molecular Biology)

  • Ondrej Cais

    (MRC Laboratory of Molecular Biology)

  • Ingo H. Greger

    (MRC Laboratory of Molecular Biology)

Abstract

AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.

Suggested Citation

  • Danyang Zhang & Jake F. Watson & Peter M. Matthews & Ondrej Cais & Ingo H. Greger, 2021. "Gating and modulation of a hetero-octameric AMPA glutamate receptor," Nature, Nature, vol. 594(7863), pages 454-458, June.
  • Handle: RePEc:nat:nature:v:594:y:2021:i:7863:d:10.1038_s41586-021-03613-0
    DOI: 10.1038/s41586-021-03613-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03613-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03613-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanda M. Perozzo & Jochen Schwenk & Aichurok Kamalova & Terunaga Nakagawa & Bernd Fakler & Derek Bowie, 2023. "GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Danyang Zhang & Remigijus Lape & Saher A. Shaikh & Bianka K. Kohegyi & Jake F. Watson & Ondrej Cais & Terunaga Nakagawa & Ingo H. Greger, 2023. "Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Andrew Muenks & Samantha Zepeda & Guangfeng Zhou & David Veesler & Frank DiMaio, 2023. "Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Beatriz Herguedas & Bianka K. Kohegyi & Jan-Niklas Dohrke & Jake F. Watson & Danyang Zhang & Hinze Ho & Saher A. Shaikh & Remigijus Lape & James M. Krieger & Ingo H. Greger, 2022. "Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:594:y:2021:i:7863:d:10.1038_s41586-021-03613-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.