IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v594y2021i7863d10.1038_s41586-021-03572-6.html
   My bibliography  Save this article

A phase-separated nuclear GBPL circuit controls immunity in plants

Author

Listed:
  • Shuai Huang

    (Howard Hughes Medical Institute
    Yale Systems Biology Institute
    Yale University School of Medicine
    Yale University School of Medicine)

  • Shiwei Zhu

    (Howard Hughes Medical Institute
    Yale Systems Biology Institute
    Yale University School of Medicine
    Yale University School of Medicine)

  • Pradeep Kumar

    (Howard Hughes Medical Institute
    Yale Systems Biology Institute
    Yale University School of Medicine
    Yale University School of Medicine)

  • John D. MacMicking

    (Howard Hughes Medical Institute
    Yale Systems Biology Institute
    Yale University School of Medicine
    Yale University School of Medicine)

Abstract

Liquid–liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1–3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family—GBPL1 and GBPL3—undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.

Suggested Citation

  • Shuai Huang & Shiwei Zhu & Pradeep Kumar & John D. MacMicking, 2021. "A phase-separated nuclear GBPL circuit controls immunity in plants," Nature, Nature, vol. 594(7863), pages 424-429, June.
  • Handle: RePEc:nat:nature:v:594:y:2021:i:7863:d:10.1038_s41586-021-03572-6
    DOI: 10.1038/s41586-021-03572-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03572-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03572-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengyun Wu & Xingsong Wang & Yan Li & Weibo Zhen & Chunfei Wang & Xiaoqing Wang & Zhouli Xie & Xiumei Xu & Siyi Guo & José Ramón Botella & Binglian Zheng & Wei Wang & Chun-Peng Song & Zhubing Hu, 2024. "Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:594:y:2021:i:7863:d:10.1038_s41586-021-03572-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.