IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v594y2021i7861d10.1038_s41586-021-03554-8.html
   My bibliography  Save this article

Structures of mammalian RNA polymerase II pre-initiation complexes

Author

Listed:
  • Shintaro Aibara

    (Max Planck Institute for Biophysical Chemistry)

  • Sandra Schilbach

    (Max Planck Institute for Biophysical Chemistry)

  • Patrick Cramer

    (Max Planck Institute for Biophysical Chemistry)

Abstract

The initiation of transcription is a focal point for the regulation of gene activity during mammalian cell differentiation and development. To initiate transcription, RNA polymerase II (Pol II) assembles with general transcription factors into a pre-initiation complex (PIC) that opens promoter DNA. Previous work provided the molecular architecture of the yeast1–9 and human10,11 PIC and a topological model for DNA opening by the general transcription factor TFIIH12–14. Here we report the high-resolution cryo-electron microscopy structure of PIC comprising human general factors and Sus scrofa domesticus Pol II, which is 99.9% identical to human Pol II. We determine the structures of PIC with closed and opened promoter DNA at 2.5–2.8 Å resolution, and resolve the structure of TFIIH at 2.9–4.0 Å resolution. We capture the TFIIH translocase XPB in the pre- and post-translocation states, and show that XPB induces and propagates a DNA twist to initiate the opening of DNA approximately 30 base pairs downstream of the TATA box. We also provide evidence that DNA opening occurs in two steps and leads to the detachment of TFIIH from the core PIC, which may stop DNA twisting and enable RNA chain initiation.

Suggested Citation

  • Shintaro Aibara & Sandra Schilbach & Patrick Cramer, 2021. "Structures of mammalian RNA polymerase II pre-initiation complexes," Nature, Nature, vol. 594(7861), pages 124-128, June.
  • Handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03554-8
    DOI: 10.1038/s41586-021-03554-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03554-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03554-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin M. Spector & Mrutyunjaya Parida & Ming Li & Christopher B. Ball & Jeffery L. Meier & Donal S. Luse & David H. Price, 2022. "Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Jina Yu & Chunli Yan & Thomas Dodd & Chi-Lin Tsai & John A. Tainer & Susan E. Tsutakawa & Ivaylo Ivanov, 2023. "Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03554-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.