IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7859d10.1038_s41586-021-03447-w.html
   My bibliography  Save this article

Discovery, characterization and engineering of ligases for amide synthesis

Author

Listed:
  • Michael Winn

    (The University of Manchester)

  • Michael Rowlinson

    (The University of Manchester)

  • Fanghua Wang

    (The University of Manchester
    South China University of Technology)

  • Luis Bering

    (The University of Manchester)

  • Daniel Francis

    (The University of Manchester)

  • Colin Levy

    (The University of Manchester)

  • Jason Micklefield

    (The University of Manchester)

Abstract

Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-l-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1–4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and l-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions—Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.

Suggested Citation

  • Michael Winn & Michael Rowlinson & Fanghua Wang & Luis Bering & Daniel Francis & Colin Levy & Jason Micklefield, 2021. "Discovery, characterization and engineering of ligases for amide synthesis," Nature, Nature, vol. 593(7859), pages 391-398, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7859:d:10.1038_s41586-021-03447-w
    DOI: 10.1038/s41586-021-03447-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03447-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03447-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Gao & Rui Ma & Fairoosa Poovan & Lan Zhang & Hanan Atia & Narayana V. Kalevaru & Wenjing Sun & Sebastian Wohlrab & Denis A. Chusov & Ning Wang & Rajenahally V. Jagadeesh & Matthias Beller, 2023. "Streamlining the synthesis of amides using Nickel-based nanocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7859:d:10.1038_s41586-021-03447-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.