IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7859d10.1038_s41586-021-03437-y.html
   My bibliography  Save this article

Overwintering fires in boreal forests

Author

Listed:
  • Rebecca C. Scholten

    (Vrije Universiteit Amsterdam)

  • Randi Jandt

    (University of Alaska)

  • Eric A. Miller

    (Alaska Fire Service)

  • Brendan M. Rogers

    (Woodwell Climate Research Center)

  • Sander Veraverbeke

    (Vrije Universiteit Amsterdam)

Abstract

Forest fires are usually viewed within the context of a single fire season, in which weather conditions and fuel supply can combine to create conditions favourable for fire ignition—usually by lightning or human activity—and spread1–3. But some fires exhibit ‘overwintering’ behaviour, in which they smoulder through the non-fire season and flare up in the subsequent spring4,5. In boreal (northern) forests, deep organic soils favourable for smouldering6, along with accelerated climate warming7, may present unusually favourable conditions for overwintering. However, the extent of overwintering in boreal forests and the underlying factors influencing this behaviour remain unclear. Here we show that overwintering fires in boreal forests are associated with hot summers generating large fire years and deep burning into organic soils, conditions that have become more frequent in our study areas in recent decades. Our results are based on an algorithm with which we detect overwintering fires in Alaska, USA, and the Northwest Territories, Canada, using field and remote sensing datasets. Between 2002 and 2018, overwintering fires were responsible for 0.8 per cent of the total burned area; however, in one year this amounted to 38 per cent. The spatiotemporal predictability of overwintering fires could be used by fire management agencies to facilitate early detection, which may result in reduced carbon emissions and firefighting costs.

Suggested Citation

  • Rebecca C. Scholten & Randi Jandt & Eric A. Miller & Brendan M. Rogers & Sander Veraverbeke, 2021. "Overwintering fires in boreal forests," Nature, Nature, vol. 593(7859), pages 399-404, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7859:d:10.1038_s41586-021-03437-y
    DOI: 10.1038/s41586-021-03437-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03437-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03437-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    2. Ivan Villaverde Canosa & James Ford & Jouni Paavola & Daria Burnasheva, 2024. "Community Risk and Resilience to Wildfires: Rethinking the Complex Human–Climate–Fire Relationship in High-Latitude Regions," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    3. Vera Kuklina & Oleg Sizov & Elena Rasputina & Irina Bilichenko & Natalia Krasnoshtanova & Viktor Bogdanov & Andrey N. Petrov, 2022. "Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga," Land, MDPI, vol. 11(3), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7859:d:10.1038_s41586-021-03437-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.