IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v592y2021i7855d10.1038_s41586-021-03407-4.html
   My bibliography  Save this article

Multistable inflatable origami structures at the metre scale

Author

Listed:
  • David Melancon

    (Harvard University)

  • Benjamin Gorissen

    (Harvard University)

  • Carlos J. García-Mora

    (Harvard University
    University of Seville)

  • Chuck Hoberman

    (Wyss Institute for Biologically Inspired Engineering Harvard University
    Hoberman Associates
    Graduate School of Design)

  • Katia Bertoldi

    (Harvard University
    Wyss Institute for Biologically Inspired Engineering Harvard University
    Harvard University)

Abstract

From stadium covers to solar sails, we rely on deployability for the design of large-scale structures that can quickly compress to a fraction of their size1–4. Historically, two main strategies have been used to design deployable systems. The first and most frequently used approach involves mechanisms comprising interconnected bar elements, which can synchronously expand and retract5–7, occasionally locking in place through bistable elements8,9. The second strategy makes use of inflatable membranes that morph into target shapes by means of a single pressure input10–12. Neither strategy, however, can be readily used to provide an enclosed domain that is able to lock in place after deployment: the integration of a protective covering in linkage-based constructions is challenging and pneumatic systems require a constant applied pressure to keep their expanded shape13–15. Here we draw inspiration from origami—the Japanese art of paper folding—to design rigid-walled deployable structures that are multistable and inflatable. Guided by geometric analyses and experiments, we create a library of bistable origami shapes that can be deployed through a single fluidic pressure input. We then combine these units to build functional structures at the metre scale, such as arches and emergency shelters, providing a direct route for building large-scale inflatable systems that lock in place after deployment and offer a robust enclosure through their stiff faces.

Suggested Citation

  • David Melancon & Benjamin Gorissen & Carlos J. García-Mora & Chuck Hoberman & Katia Bertoldi, 2021. "Multistable inflatable origami structures at the metre scale," Nature, Nature, vol. 592(7855), pages 545-550, April.
  • Handle: RePEc:nat:nature:v:592:y:2021:i:7855:d:10.1038_s41586-021-03407-4
    DOI: 10.1038/s41586-021-03407-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03407-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03407-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Jamalimehr & Morad Mirzajanzadeh & Abdolhamid Akbarzadeh & Damiano Pasini, 2022. "Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Kai Xiao & Zihe Liang & Bihui Zou & Xiang Zhou & Jaehyung Ju, 2022. "Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Haitao Ye & Qingjiang Liu & Jianxiang Cheng & Honggeng Li & Bingcong Jian & Rong Wang & Zechu Sun & Yang Lu & Qi Ge, 2023. "Multimaterial 3D printed self-locking thick-panel origami metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:592:y:2021:i:7855:d:10.1038_s41586-021-03407-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.