IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v592y2021i7853d10.1038_s41586-021-03299-4.html
   My bibliography  Save this article

Hunger enhances food-odour attraction through a neuropeptide Y spotlight

Author

Listed:
  • Nao Horio

    (Harvard Medical School)

  • Stephen D. Liberles

    (Harvard Medical School)

Abstract

Internal state controls olfaction through poorly understood mechanisms. Odours that represent food, mates, competitors and predators activate parallel neural circuits that may be flexibly shaped by physiological need to alter behavioural outcome1. Here we identify a neuronal mechanism by which hunger selectively promotes attraction to food odours over other olfactory cues. Optogenetic activation of hypothalamic agouti-related peptide (AGRP) neurons enhances attraction to food odours but not to pheromones, and branch-specific activation and inhibition reveal a key role for projections to the paraventricular thalamus. Mice that lack neuropeptide Y (NPY) or NPY receptor type 5 (NPY5R) fail to prefer food odours over pheromones after fasting, and hunger-dependent food-odour attraction is restored by cell-specific NPY rescue in AGRP neurons. Furthermore, acute NPY injection immediately rescues food-odour preference without additional training, indicating that NPY is required for reading olfactory circuits during behavioural expression rather than writing olfactory circuits during odour learning. Together, these findings show that food-odour-responsive neurons comprise an olfactory subcircuit that listens to hunger state through thalamic NPY release, and more generally, provide mechanistic insights into how internal state regulates behaviour.

Suggested Citation

  • Nao Horio & Stephen D. Liberles, 2021. "Hunger enhances food-odour attraction through a neuropeptide Y spotlight," Nature, Nature, vol. 592(7853), pages 262-266, April.
  • Handle: RePEc:nat:nature:v:592:y:2021:i:7853:d:10.1038_s41586-021-03299-4
    DOI: 10.1038/s41586-021-03299-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03299-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03299-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Ma & John J. O’Malley & Malaz Kreiker & Yan Leng & Isbah Khan & Morgan Kindel & Mario A. Penzo, 2024. "Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Young Hee Lee & Yu-Been Kim & Kyu Sik Kim & Mirae Jang & Ha Young Song & Sang-Ho Jung & Dong-Soo Ha & Joon Seok Park & Jaegeon Lee & Kyung Min Kim & Deok-Hyeon Cheon & Inhyeok Baek & Min-Gi Shin & Eun, 2023. "Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Stephan Dodt & Noah V. Widdershooven & Marie-Luise Dreisow & Lisa Weiher & Lukas Steuernagel & F. Thomas Wunderlich & Jens C. Brüning & Henning Fenselau, 2024. "NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:592:y:2021:i:7853:d:10.1038_s41586-021-03299-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.