IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7851d10.1038_s41586-021-03241-8.html
   My bibliography  Save this article

Multi-kingdom ecological drivers of microbiota assembly in preterm infants

Author

Listed:
  • Chitong Rao

    (Boston Children’s Hospital)

  • Katharine Z. Coyte

    (Boston Children’s Hospital
    University of Manchester)

  • Wayne Bainter

    (Boston Children’s Hospital)

  • Raif S. Geha

    (Boston Children’s Hospital)

  • Camilia R. Martin

    (Beth Israel Deaconess Medical Center)

  • Seth Rakoff-Nahoum

    (Boston Children’s Hospital
    Boston Children’s Hospital
    Harvard Medical School
    Broad Institute of MIT and Harvard)

Abstract

The gut microbiota of preterm infants develops predictably1–7, with pioneer species colonizing the gut after birth, followed by an ordered succession of microorganisms. The gut microbiota is vital to the health of preterm infants8,9, but the forces that shape these predictable dynamics of microbiome assembly are unknown. The environment, the host and interactions between microorganisms all potentially shape the dynamics of the microbiota, but in such a complex ecosystem, identifying the specific role of any individual factor is challenging10–14. Here we use multi-kingdom absolute abundance quantification, ecological modelling and experimental validation to address this challenge. We quantify the absolute dynamics of bacteria, fungi and archaea in a longitudinal cohort of 178 preterm infants. We uncover microbial blooms and extinctions, and show that there is an inverse correlation between bacterial and fungal loads in the infant gut. We infer computationally and demonstrate experimentally in vitro and in vivo that predictable assembly dynamics may be driven by directed, context-dependent interactions between specific microorganisms. Mirroring the dynamics of macroscopic ecosystems15–17, a late-arriving member of the microbiome, Klebsiella, exploits the pioneer microorganism, Staphylococcus, to gain a foothold within the gut. Notably, we find that interactions between different kingdoms can influence assembly, with a single fungal species—Candida albicans—inhibiting multiple dominant genera of gut bacteria. Our work reveals the centrality of simple microbe–microbe interactions in shaping host-associated microbiota, which is critical both for our understanding of microbiota ecology and for targeted microbiota interventions.

Suggested Citation

  • Chitong Rao & Katharine Z. Coyte & Wayne Bainter & Raif S. Geha & Camilia R. Martin & Seth Rakoff-Nahoum, 2021. "Multi-kingdom ecological drivers of microbiota assembly in preterm infants," Nature, Nature, vol. 591(7851), pages 633-638, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03241-8
    DOI: 10.1038/s41586-021-03241-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03241-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03241-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna S. Weiss & Lisa S. Niedermeier & Alexandra von Strempel & Anna G. Burrichter & Diana Ring & Chen Meng & Karin Kleigrewe & Chiara Lincetto & Johannes Hübner & Bärbel Stecher, 2023. "Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03241-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.