IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7850d10.1038_s41586-020-03154-y.html
   My bibliography  Save this article

Dopamine-based mechanism for transient forgetting

Author

Listed:
  • John Martin Sabandal

    (Scripps Research Institute Florida)

  • Jacob A. Berry

    (Scripps Research Institute Florida)

  • Ronald L. Davis

    (Scripps Research Institute Florida)

Abstract

Active forgetting is an essential component of the memory management system of the brain1. Forgetting can be permanent, in which prior memory is lost completely, or transient, in which memory exists in a temporary state of impaired retrieval. Temporary blocks on memory seem to be universal, and can disrupt an individual’s plans, social interactions and ability to make rapid, flexible and appropriate choices. However, the neurobiological mechanisms that cause transient forgetting are unknown. Here we identify a single dopamine neuron in Drosophila that mediates the memory suppression that results in transient forgetting. Artificially activating this neuron did not abolish the expression of long-term memory. Instead, it briefly suppressed memory retrieval, with the memory becoming accessible again over time. The dopamine neuron modulates memory retrieval by stimulating a unique dopamine receptor that is expressed in a restricted physical compartment of the axons of mushroom body neurons. This mechanism for transient forgetting is triggered by the presentation of interfering stimuli immediately before retrieval.

Suggested Citation

  • John Martin Sabandal & Jacob A. Berry & Ronald L. Davis, 2021. "Dopamine-based mechanism for transient forgetting," Nature, Nature, vol. 591(7850), pages 426-430, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7850:d:10.1038_s41586-020-03154-y
    DOI: 10.1038/s41586-020-03154-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03154-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03154-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangmin Zhou & Alexandra-Madelaine Tichy & Bibi Nusreen Imambocus & Shreyas Sakharwade & Francisco J. Rodriguez Jimenez & Marco González Martínez & Ishrat Jahan & Margarita Habib & Nina Wilhelmy & Van, 2023. "Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7850:d:10.1038_s41586-020-03154-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.