IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7845d10.1038_s41586-021-03257-0.html
   My bibliography  Save this article

Protecting a bosonic qubit with autonomous quantum error correction

Author

Listed:
  • Jeffrey M. Gertler

    (University of Massachusetts Amherst)

  • Brian Baker

    (Northwestern University)

  • Juliang Li

    (University of Massachusetts Amherst)

  • Shruti Shirol

    (University of Massachusetts Amherst)

  • Jens Koch

    (Northwestern University)

  • Chen Wang

    (University of Massachusetts Amherst)

Abstract

To build a universal quantum computer from fragile physical qubits, effective implementation of quantum error correction (QEC)1 is an essential requirement and a central challenge. Existing demonstrations of QEC are based on an active schedule of error-syndrome measurements and adaptive recovery operations2,3,4,5,6,7 that are hardware intensive and prone to introducing and propagating errors. In principle, QEC can be realized autonomously and continuously by tailoring dissipation within the quantum system1,8,9,10,11,12,13,14, but so far it has remained challenging to achieve the specific form of dissipation required to counter the most prominent errors in a physical platform. Here we encode a logical qubit in Schrödinger cat-like multiphoton states15 of a superconducting cavity, and demonstrate a corrective dissipation process that stabilizes an error-syndrome operator: the photon number parity. Implemented with continuous-wave control fields only, this passive protocol protects the quantum information by autonomously correcting single-photon-loss errors and boosts the coherence time of the bosonic qubit by over a factor of two. Notably, QEC is realized in a modest hardware setup with neither high-fidelity readout nor fast digital feedback, in contrast to the technological sophistication required for prior QEC demonstrations. Compatible with additional phase-stabilization and fault-tolerant techniques16,17,18, our experiment suggests quantum dissipation engineering as a resource-efficient alternative or supplement to active QEC in future quantum computing architectures.

Suggested Citation

  • Jeffrey M. Gertler & Brian Baker & Juliang Li & Shruti Shirol & Jens Koch & Chen Wang, 2021. "Protecting a bosonic qubit with autonomous quantum error correction," Nature, Nature, vol. 590(7845), pages 243-248, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-021-03257-0
    DOI: 10.1038/s41586-021-03257-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03257-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03257-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-021-03257-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.