IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7845d10.1038_s41586-020-03126-2.html
   My bibliography  Save this article

Integrated spatial genomics reveals global architecture of single nuclei

Author

Listed:
  • Yodai Takei

    (California Institute of Technology)

  • Jina Yun

    (California Institute of Technology)

  • Shiwei Zheng

    (Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health
    Icahn School of Medicine at Mount Sinai)

  • Noah Ollikainen

    (California Institute of Technology)

  • Nico Pierson

    (California Institute of Technology)

  • Jonathan White

    (California Institute of Technology)

  • Sheel Shah

    (California Institute of Technology)

  • Julian Thomassie

    (California Institute of Technology)

  • Shengbao Suo

    (Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health
    Icahn School of Medicine at Mount Sinai)

  • Chee-Huat Linus Eng

    (California Institute of Technology)

  • Mitchell Guttman

    (California Institute of Technology)

  • Guo-Cheng Yuan

    (Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health
    Icahn School of Medicine at Mount Sinai)

  • Long Cai

    (California Institute of Technology)

Abstract

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1–4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form ‘fixed points’ in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3–4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.

Suggested Citation

  • Yodai Takei & Jina Yun & Shiwei Zheng & Noah Ollikainen & Nico Pierson & Jonathan White & Sheel Shah & Julian Thomassie & Shengbao Suo & Chee-Huat Linus Eng & Mitchell Guttman & Guo-Cheng Yuan & Long , 2021. "Integrated spatial genomics reveals global architecture of single nuclei," Nature, Nature, vol. 590(7845), pages 344-350, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-020-03126-2
    DOI: 10.1038/s41586-020-03126-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03126-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03126-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Jinhyun Kim & Sungsik Kim & Huiran Yeom & Seo Woo Song & Kyoungseob Shin & Sangwook Bae & Han Suk Ryu & Ji Young Kim & Ahyoun Choi & Sumin Lee & Taehoon Ryu & Yeongjae Choi & Hamin Kim & Okju Kim & Yu, 2023. "Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yingfeng Tao & Xiaoliu Zhou & Leqiang Sun & Da Lin & Huaiyuan Cai & Xi Chen & Wei Zhou & Bing Yang & Zhe Hu & Jing Yu & Jing Zhang & Xiaoqing Yang & Fang Yang & Bang Shen & Wenbao Qi & Zhenfang Fu & J, 2023. "Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Ana Mota & Szymon Berezicki & Erik Wernersson & Luuk Harbers & Xiaoze Li-Wang & Katarina Gradin & Christiane Peuckert & Nicola Crosetto & Magda Bienko, 2022. "FRET-FISH probes chromatin compaction at individual genomic loci in single cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Robin Aguilar & Conor K. Camplisson & Qiaoyi Lin & Karen H. Miga & William S. Noble & Brian J. Beliveau, 2024. "Tigerfish designs oligonucleotide-based in situ hybridization probes targeting intervals of highly repetitive DNA at the scale of genomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Lindsay Lee & Hongyu Yu & Bojing Blair Jia & Adam Jussila & Chenxu Zhu & Jiawen Chen & Liangqi Xie & Antonina Hafner & Shreya Mishra & Duan Dennis Wang & Caterina Strambio-De-Castillia & Alistair Boet, 2023. "SnapFISH: a computational pipeline to identify chromatin loops from multiplexed DNA FISH data," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-020-03126-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.