IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7843d10.1038_s41586-020-03139-x.html
   My bibliography  Save this article

A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge

Author

Listed:
  • Matthew R. Agius

    (University of Southampton
    Università degli studi Roma Tre)

  • Catherine A. Rychert

    (University of Southampton)

  • Nicholas Harmon

    (University of Southampton)

  • Saikiran Tharimena

    (University of Southampton
    University of Vienna)

  • J.-Michael Kendall

    (University of Oxford)

Abstract

The location and degree of material transfer between the upper and lower mantle are key to the Earth’s thermal and chemical evolution. Sinking slabs and rising plumes are generally accepted as locations of transfer1,2, whereas mid-ocean ridges are not typically assumed to have a role3. However, tight constraints from in situ measurements at ridges have proved to be challenging. Here we use receiver functions that reveal the conversion of primary to secondary seismic waves to image the discontinuities that bound the mantle transition zone, using ocean bottom seismic data from the equatorial Mid-Atlantic Ridge. Our images show that the seismic discontinuity at depths of about 660 kilometres is broadly uplifted by 10 ± 4 kilometres over a swath about 600 kilometres wide and that the 410-kilometre discontinuity is depressed by 5 ± 4 kilometres. This thinning of the mantle transition zone is coincident with slow shear-wave velocities in the mantle, from global seismic tomography4–7. In addition, seismic velocities in the mantle transition zone beneath the Mid-Atlantic Ridge are on average slower than those beneath older Atlantic Ocean seafloor. The observations imply material transfer from the lower to the upper mantle—either continuous or punctuated—that is linked to the Mid-Atlantic Ridge. Given the length and longevity of the mid-ocean ridge system, this implies that whole-mantle convection may be more prevalent than previously thought, with ridge upwellings having a role in counterbalancing slab downwellings.

Suggested Citation

  • Matthew R. Agius & Catherine A. Rychert & Nicholas Harmon & Saikiran Tharimena & J.-Michael Kendall, 2021. "A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge," Nature, Nature, vol. 589(7843), pages 562-566, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7843:d:10.1038_s41586-020-03139-x
    DOI: 10.1038/s41586-020-03139-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03139-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03139-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Leptokaropoulos & Catherine A. Rychert & Nicholas Harmon & David Schlaphorst & Ingo Grevemeyer & John-Michael Kendall & Satish C. Singh, 2023. "Broad fault zones enable deep fluid transport and limit earthquake magnitudes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7843:d:10.1038_s41586-020-03139-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.