IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7842d10.1038_s41586-020-2887-3.html
   My bibliography  Save this article

High sensitivity of tropical precipitation to local sea surface temperature

Author

Listed:
  • Peter Good

    (MetOffice Hadley Centre)

  • Robin Chadwick

    (MetOffice Hadley Centre
    University of Exeter)

  • Christopher E. Holloway

    (University of Reading)

  • John Kennedy

    (MetOffice Hadley Centre)

  • Jason A. Lowe

    (MetOffice Hadley Centre
    University of Leeds)

  • Romain Roehrig

    (CNRM, Université de Toulouse, Météo-France, CNRS)

  • Stephanie S. Rushley

    (University of Washington)

Abstract

Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1–5. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6–8 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean’s influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12–18, including excessively wide tropical rainbands14,18, the ‘double-intertropical convergence zone problem’12,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.

Suggested Citation

  • Peter Good & Robin Chadwick & Christopher E. Holloway & John Kennedy & Jason A. Lowe & Romain Roehrig & Stephanie S. Rushley, 2021. "High sensitivity of tropical precipitation to local sea surface temperature," Nature, Nature, vol. 589(7842), pages 408-414, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-2887-3
    DOI: 10.1038/s41586-020-2887-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2887-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2887-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Or Hess & Rei Chemke, 2024. "Anthropogenic forcings reverse a simulated multi-century naturally-forced Northern Hemisphere Hadley cell intensification," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Lei Gu & Jiabo Yin & Pierre Gentine & Hui-Min Wang & Louise J. Slater & Sylvia C. Sullivan & Jie Chen & Jakob Zscheischler & Shenglian Guo, 2023. "Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-2887-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.