IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7840d10.1038_s41586-020-2959-4.html
   My bibliography  Save this article

TRF2-mediated telomere protection is dispensable in pluripotent stem cells

Author

Listed:
  • Marta Markiewicz-Potoczny

    (National Cancer Institute, NIH)

  • Anastasia Lobanova

    (The Scripps Research Institute)

  • Anisha M. Loeb

    (National Cancer Institute, NIH)

  • Oktay Kirak

    (University of Freiburg)

  • Teresa Olbrich

    (National Cancer Institute, NIH)

  • Sergio Ruiz

    (National Cancer Institute, NIH)

  • Eros Lazzerini Denchi

    (National Cancer Institute, NIH)

Abstract

In mammals, telomere protection is mediated by the essential protein TRF2, which binds chromosome ends and ensures genome integrity1,2. TRF2 depletion results in end-to-end chromosome fusions in all cell types that have been tested so far. Here we find that TRF2 is dispensable for the proliferation and survival of mouse embryonic stem (ES) cells. Trf2−/− (also known as Terf2) ES cells do not exhibit telomere fusions and can be expanded indefinitely. In response to the deletion of TRF2, ES cells exhibit a muted DNA damage response that is characterized by the recruitment of γH2AX—but not 53BP1—to telomeres. To define the mechanisms that control this unique DNA damage response in ES cells, we performed a CRISPR–Cas9-knockout screen. We found a strong dependency of TRF2-null ES cells on the telomere-associated protein POT1B and on the chromatin remodelling factor BRD2. Co-depletion of POT1B or BRD2 with TRF2 restores a canonical DNA damage response at telomeres, resulting in frequent telomere fusions. We found that TRF2 depletion in ES cells activates a totipotent-like two-cell-stage transcriptional program that includes high levels of ZSCAN4. We show that the upregulation of ZSCAN4 contributes to telomere protection in the absence of TRF2. Together, our results uncover a unique response to telomere deprotection during early development.

Suggested Citation

  • Marta Markiewicz-Potoczny & Anastasia Lobanova & Anisha M. Loeb & Oktay Kirak & Teresa Olbrich & Sergio Ruiz & Eros Lazzerini Denchi, 2021. "TRF2-mediated telomere protection is dispensable in pluripotent stem cells," Nature, Nature, vol. 589(7840), pages 110-115, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-2959-4
    DOI: 10.1038/s41586-020-2959-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2959-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2959-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy K. Turkalo & Antonio Maffia & Johannes J. Schabort & Samuel G. Regalado & Mital Bhakta & Marco Blanchette & Diana C. J. Spierings & Peter M. Lansdorp & Dirk Hockemeyer, 2023. "A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Shrestha Ghosh & Mileena T. Nguyen & Ha Eun Choi & Maximilian Stahl & Annemarie Luise Kühn & Sandra Auwera & Hans J. Grabe & Henry Völzke & Georg Homuth & Samuel A. Myers & Cory M. Hogaboam & Imre Not, 2024. "RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-2959-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.