IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7840d10.1038_s41586-020-2762-2.html
   My bibliography  Save this article

Prokaryotic viperins produce diverse antiviral molecules

Author

Listed:
  • Aude Bernheim

    (Weizmann Institute of Science)

  • Adi Millman

    (Weizmann Institute of Science)

  • Gal Ofir

    (Weizmann Institute of Science)

  • Gilad Meitav

    (Weizmann Institute of Science)

  • Carmel Avraham

    (Weizmann Institute of Science)

  • Helena Shomar

    (Pantheon Biosciences)

  • Masha M. Rosenberg

    (Pantheon Biosciences)

  • Nir Tal

    (Pantheon Biosciences)

  • Sarah Melamed

    (Weizmann Institute of Science)

  • Gil Amitai

    (Weizmann Institute of Science)

  • Rotem Sorek

    (Weizmann Institute of Science)

Abstract

Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3′-deoxy-3′,4′-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.

Suggested Citation

  • Aude Bernheim & Adi Millman & Gal Ofir & Gilad Meitav & Carmel Avraham & Helena Shomar & Masha M. Rosenberg & Nir Tal & Sarah Melamed & Gil Amitai & Rotem Sorek, 2021. "Prokaryotic viperins produce diverse antiviral molecules," Nature, Nature, vol. 589(7840), pages 120-124, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-2762-2
    DOI: 10.1038/s41586-020-2762-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2762-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2762-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Leão & Mary E. Little & Kathryn E. Appler & Daphne Sahaya & Emily Aguilar-Pine & Kathryn Currie & Ilya J. Finkelstein & Valerie Anda & Brett J. Baker, 2024. "Asgard archaea defense systems and their roles in the origin of eukaryotic immunity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Sam C. Went & David M. Picton & Richard D. Morgan & Andrew Nelson & Aisling Brady & Giuseppina Mariano & David T. F. Dryden & Darren L. Smith & Nicolas Wenner & Jay C. D. Hinton & Tim R. Blower, 2024. "Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Nathalie Béchon & Nitzan Tal & Avigail Stokar-Avihail & Alon Savidor & Meital Kupervaser & Sarah Melamed & Gil Amitai & Rotem Sorek, 2024. "Diversification of molecular pattern recognition in bacterial NLR-like proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Florian Tesson & Alexandre Hervé & Ernest Mordret & Marie Touchon & Camille d’Humières & Jean Cury & Aude Bernheim, 2022. "Systematic and quantitative view of the antiviral arsenal of prokaryotes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-2762-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.