IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7838d10.1038_s41586-020-3020-3.html
   My bibliography  Save this article

Tuning the Chern number in quantum anomalous Hall insulators

Author

Listed:
  • Yi-Fan Zhao

    (The Pennsylvania State University)

  • Ruoxi Zhang

    (The Pennsylvania State University)

  • Ruobing Mei

    (The Pennsylvania State University)

  • Ling-Jie Zhou

    (The Pennsylvania State University)

  • Hemian Yi

    (The Pennsylvania State University)

  • Ya-Qi Zhang

    (The Pennsylvania State University)

  • Jiabin Yu

    (The Pennsylvania State University)

  • Run Xiao

    (The Pennsylvania State University)

  • Ke Wang

    (The Pennsylvania State University)

  • Nitin Samarth

    (The Pennsylvania State University)

  • Moses H. W. Chan

    (The Pennsylvania State University)

  • Chao-Xing Liu

    (The Pennsylvania State University)

  • Cui-Zu Chang

    (The Pennsylvania State University)

Abstract

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3–9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

Suggested Citation

  • Yi-Fan Zhao & Ruoxi Zhang & Ruobing Mei & Ling-Jie Zhou & Hemian Yi & Ya-Qi Zhang & Jiabin Yu & Run Xiao & Ke Wang & Nitin Samarth & Moses H. W. Chan & Chao-Xing Liu & Cui-Zu Chang, 2020. "Tuning the Chern number in quantum anomalous Hall insulators," Nature, Nature, vol. 588(7838), pages 419-423, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-3020-3
    DOI: 10.1038/s41586-020-3020-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-3020-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-3020-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyi Zhuo & Zi-Jie Yan & Zi-Ting Sun & Ling-Jie Zhou & Yi-Fan Zhao & Ruoxi Zhang & Ruobing Mei & Hemian Yi & Ke Wang & Moses H. W. Chan & Chao-Xing Liu & K. T. Law & Cui-Zu Chang, 2023. "Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yi-Fan Zhao & Ruoxi Zhang & Jiaqi Cai & Deyi Zhuo & Ling-Jie Zhou & Zi-Jie Yan & Moses H. W. Chan & Xiaodong Xu & Cui-Zu Chang, 2023. "Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Jiaojian Shi & Haowei Xu & Christian Heide & Changan HuangFu & Chenyi Xia & Felipe Quesada & Hongzhi Shen & Tianyi Zhang & Leo Yu & Amalya Johnson & Fang Liu & Enzheng Shi & Liying Jiao & Tony Heinz &, 2023. "Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-3020-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.