IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7838d10.1038_s41586-020-2942-0.html
   My bibliography  Save this article

Assembly of synaptic active zones requires phase separation of scaffold molecules

Author

Listed:
  • Nathan A. McDonald

    (Stanford University)

  • Richard D. Fetter

    (Stanford University)

  • Kang Shen

    (Stanford University
    Stanford University)

Abstract

The formation of synapses during neuronal development is essential for establishing neural circuits and a nervous system1. Every presynapse builds a core ‘active zone’ structure, where ion channels cluster and synaptic vesicles release their neurotransmitters2. Although the composition of active zones is well characterized2,3, it is unclear how active-zone proteins assemble together and recruit the machinery required for vesicle release during development. Here we find that the core active-zone scaffold proteins SYD-2 (also known as liprin-α) and ELKS-1 undergo phase separation during an early stage of synapse development, and later mature into a solid structure. We directly test the in vivo function of phase separation by using mutant SYD-2 and ELKS-1 proteins that specifically lack this activity. These mutant proteins remain enriched at synapses in Caenorhabditis elegans, but show defects in active-zone assembly and synapse function. The defects are rescued by introducing a phase-separation motif from an unrelated protein. In vitro, we reconstitute the SYD-2 and ELKS-1 liquid-phase scaffold, and find that it is competent to bind and incorporate downstream active-zone components. We find that the fluidity of SYD-2 and ELKS-1 condensates is essential for efficient mixing and incorporation of active-zone components. These data reveal that a developmental liquid phase of scaffold molecules is essential for the assembly of the synaptic active zone, before maturation into a stable final structure.

Suggested Citation

  • Nathan A. McDonald & Richard D. Fetter & Kang Shen, 2020. "Assembly of synaptic active zones requires phase separation of scaffold molecules," Nature, Nature, vol. 588(7838), pages 454-458, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-2942-0
    DOI: 10.1038/s41586-020-2942-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2942-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2942-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalie J. Guzikowski & Ege T. Kavalali, 2024. "Functional specificity of liquid-liquid phase separation at the synapse," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Daehun Park & Yumei Wu & Xinbo Wang & Swetha Gowrishankar & Aaron Baublis & Pietro De Camilli, 2023. "Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Xuanyan Jia & Leishu Lin & Siqi Guo & Lulu Zhou & Gaowei Jin & Jiayuan Dong & Jinman Xiao & Xingqiao Xie & Yiming Li & Sicong He & Zhiyi Wei & Cong Yu, 2024. "CLASP-mediated competitive binding in protein condensates directs microtubule growth," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Pu-Yun Shih & Yu-Lun Fang & Sahana Shankar & Sue-Ping Lee & Hsiao-Tang Hu & Hsin Chen & Ting-Fang Wang & Kuo-Chiang Hsia & Yi-Ping Hsueh, 2022. "Phase separation and zinc-induced transition modulate synaptic distribution and association of autism-linked CTTNBP2 and SHANK3," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-2942-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.