IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7838d10.1038_s41586-020-2838-z.html
   My bibliography  Save this article

Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection

Author

Listed:
  • Stylianos Bournazos

    (The Rockefeller University)

  • Davide Corti

    (a subsidiary of Vir Biotechnology Inc.)

  • Herbert W. Virgin

    (Vir Biotechnology Inc.)

  • Jeffrey V. Ravetch

    (The Rockefeller University)

Abstract

Antibodies against viral pathogens represent promising therapeutic agents for the control of infection, and their antiviral efficacy has been shown to require the coordinated function of both the Fab and Fc domains1. The Fc domain engages a wide spectrum of receptors on discrete cells of the immune system to trigger the clearance of viruses and subsequent killing of infected cells1–4. Here we report that Fc engineering of anti-influenza IgG monoclonal antibodies for selective binding to the activating Fcγ receptor FcγRIIa results in enhanced ability to prevent or treat lethal viral respiratory infection in mice, with increased maturation of dendritic cells and the induction of protective CD8+ T cell responses. These findings highlight the capacity for IgG antibodies to induce protective adaptive immunity to viral infection when they selectively activate a dendritic cell and T cell pathway, with important implications for the development of therapeutic antibodies with improved antiviral efficacy against viral respiratory pathogens.

Suggested Citation

  • Stylianos Bournazos & Davide Corti & Herbert W. Virgin & Jeffrey V. Ravetch, 2020. "Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection," Nature, Nature, vol. 588(7838), pages 485-490, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-2838-z
    DOI: 10.1038/s41586-020-2838-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2838-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2838-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolyn M. Boudreau & John S. Burke & Ashraf S. Yousif & Maya Sangesland & Sandra Jastrzebski & Chris Verschoor & George Kuchel & Daniel Lingwood & Harry Kleanthous & Iris Bruijn & Victoria Landolfi &, 2023. "Antibody-mediated NK cell activation as a correlate of immunity against influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Felix Jünger & Dominic Ruh & Dominik Strobel & Rebecca Michiels & Dominik Huber & Annette Brandel & Josef Madl & Alina Gavrilov & Michael Mihlan & Caterina Cora Daller & Eva A. Rog-Zielinska & Winfrie, 2022. "100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Aaron Gupta & Kevin S. Kao & Rachel Yamin & Deena A. Oren & Yehuda Goldgur & Jonathan Du & Pete Lollar & Eric J. Sundberg & Jeffrey V. Ravetch, 2023. "Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-2838-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.