IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v587y2020i7835d10.1038_s41586-020-2601-5.html
   My bibliography  Save this article

Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity

Author

Listed:
  • Donghyuk Shin

    (Goethe University
    Goethe University
    Max Planck Institute of Biophysics)

  • Rukmini Mukherjee

    (Goethe University
    Goethe University)

  • Diana Grewe

    (Goethe University)

  • Denisa Bojkova

    (University Hospital Frankfurt)

  • Kheewoong Baek

    (Max Planck Institute of Biochemistry)

  • Anshu Bhattacharya

    (Goethe University
    Goethe University)

  • Laura Schulz

    (Max Planck Institute of Biophysics)

  • Marek Widera

    (University Hospital Frankfurt)

  • Ahmad Reza Mehdipour

    (Max Planck Institute of Biophysics)

  • Georg Tascher

    (Goethe University)

  • Paul P. Geurink

    (Leiden University Medical Centre)

  • Alexander Wilhelm

    (University Hospital Frankfurt
    Goethe-University)

  • Gerbrand J. Heden van Noort

    (Leiden University Medical Centre)

  • Huib Ovaa

    (Leiden University Medical Centre)

  • Stefan Müller

    (Goethe University)

  • Klaus-Peter Knobeloch

    (University of Freiburg)

  • Krishnaraj Rajalingam

    (University Medical Center of the Johannes Gutenberg University Mainz)

  • Brenda A. Schulman

    (Max Planck Institute of Biochemistry)

  • Jindrich Cinatl

    (University Hospital Frankfurt)

  • Gerhard Hummer

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

  • Sandra Ciesek

    (University Hospital Frankfurt
    Goethe-University
    Branch Translational Medicine and Pharmacology)

  • Ivan Dikic

    (Goethe University
    Goethe University
    Max Planck Institute of Biophysics
    Branch Translational Medicine and Pharmacology)

Abstract

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3–5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.

Suggested Citation

  • Donghyuk Shin & Rukmini Mukherjee & Diana Grewe & Denisa Bojkova & Kheewoong Baek & Anshu Bhattacharya & Laura Schulz & Marek Widera & Ahmad Reza Mehdipour & Georg Tascher & Paul P. Geurink & Alexande, 2020. "Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity," Nature, Nature, vol. 587(7835), pages 657-662, November.
  • Handle: RePEc:nat:nature:v:587:y:2020:i:7835:d:10.1038_s41586-020-2601-5
    DOI: 10.1038/s41586-020-2601-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2601-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2601-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nik Franko & Ana Palma Teixeira & Shuai Xue & Ghislaine Charpin-El Hamri & Martin Fussenegger, 2021. "Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Iona Wallace & Kheewoong Baek & J. Rajan Prabu & Ronnald Vollrath & Susanne Gronau & Brenda A. Schulman & Kirby N. Swatek, 2023. "Insights into the ISG15 transfer cascade by the UBE1L activating enzyme," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Jolien Van Cleemput & Willem van Snippenberg & Laurens Lambrechts & Amélie Dendooven & Valentino D’Onofrio & Liesbeth Couck & Wim Trypsteen & Jan Vanrusselt & Sebastiaan Theuns & Nick Vereecke & Thier, 2021. "Organ-specific genome diversity of replication-competent SARS-CoV-2," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Mohammad Afsar & GuanQun Liu & Lijia Jia & Eliza A. Ruben & Digant Nayak & Zuberwasim Sayyad & Priscila dos Santos Bury & Kristin E. Cano & Anindita Nayak & Xiang Ru Zhao & Ankita Shukla & Patrick Sun, 2023. "Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1-E2 thioester transfer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Alice Mac Kain & Ghizlane Maarifi & Sophie-Marie Aicher & Nathalie Arhel & Artem Baidaliuk & Sandie Munier & Flora Donati & Thomas Vallet & Quang Dinh Tran & Alexandra Hardy & Maxime Chazal & François, 2022. "Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Leonid Andronov & Mengting Han & Yanyu Zhu & Ashwin Balaji & Anish R. Roy & Andrew E. S. Barentine & Puja Patel & Jaishree Garhyan & Lei S. Qi & W. E. Moerner, 2024. "Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Pawel M. Wydorski & Jerzy Osipiuk & Benjamin T. Lanham & Christine Tesar & Michael Endres & Elizabeth Engle & Robert Jedrzejczak & Vishruth Mullapudi & Karolina Michalska & Krzysztof Fidelis & David F, 2023. "Dual domain recognition determines SARS-CoV-2 PLpro selectivity for human ISG15 and K48-linked di-ubiquitin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Xinyu Wu & Margareta Go & Julie V. Nguyen & Nathan W. Kuchel & Bernadine G. C. Lu & Kathleen Zeglinski & Kym N. Lowes & Dale J. Calleja & Jeffrey P. Mitchell & Guillaume Lessene & David Komander & Mat, 2024. "Mutational profiling of SARS-CoV-2 papain-like protease reveals requirements for function, structure, and drug escape," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Maria I. Freiberger & Victoria Ruiz-Serra & Camila Pontes & Miguel Romero-Durana & Pablo Galaz-Davison & Cesar A. Ramírez-Sarmiento & Claudio D. Schuster & Marcelo A. Marti & Peter G. Wolynes & Diego , 2023. "Local energetic frustration conservation in protein families and superfamilies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:587:y:2020:i:7835:d:10.1038_s41586-020-2601-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.