IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v587y2020i7834d10.1038_s41586-020-2905-5.html
   My bibliography  Save this article

Persistent transcriptional programmes are associated with remote memory

Author

Listed:
  • Michelle B. Chen

    (Stanford University)

  • Xian Jiang

    (Stanford University
    Stanford University School of Medicine)

  • Stephen R. Quake

    (Stanford University
    Chan Zuckerberg Biohub)

  • Thomas C. Südhof

    (Stanford University
    Stanford University School of Medicine)

Abstract

The role of gene expression during learning and in short-term memories has been studied extensively1–3, but less is known about remote memories, which can persist for a lifetime4. Here we used long-term contextual fear memory as a paradigm to probe the single-cell gene expression landscape that underlies remote memory storage in the medial prefrontal cortex. We found persistent activity-specific transcriptional alterations in diverse populations of neurons that lasted for weeks after fear learning. Out of a vast plasticity-coding space, we identified genes associated with membrane fusion that could have important roles in the maintenance of remote memory. Unexpectedly, astrocytes and microglia also acquired persistent gene expression signatures that were associated with remote memory, suggesting that they actively contribute to memory circuits. The discovery of gene expression programmes associated with remote memory engrams adds an important dimension of activity-dependent cellular states to existing brain taxonomy atlases and sheds light on the elusive mechanisms of remote memory storage.

Suggested Citation

  • Michelle B. Chen & Xian Jiang & Stephen R. Quake & Thomas C. Südhof, 2020. "Persistent transcriptional programmes are associated with remote memory," Nature, Nature, vol. 587(7834), pages 437-442, November.
  • Handle: RePEc:nat:nature:v:587:y:2020:i:7834:d:10.1038_s41586-020-2905-5
    DOI: 10.1038/s41586-020-2905-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2905-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2905-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María P. Contreras & Marta Mendez & Xia Shan & Julia Fechner & Anuck Sawangjit & Jan Born & Marion Inostroza, 2024. "Context memory formed in medial prefrontal cortex during infancy enhances learning in adulthood," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Ruijie Li & Junjie Huang & Longhui Li & Zhikai Zhao & Susu Liang & Shanshan Liang & Meng Wang & Xiang Liao & Jing Lyu & Zhenqiao Zhou & Sibo Wang & Wenjun Jin & Haiyang Chen & Damaris Holder & Hongban, 2023. "Holistic bursting cells store long-term memory in auditory cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:587:y:2020:i:7834:d:10.1038_s41586-020-2905-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.