IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v586y2020i7829d10.1038_s41586-020-2791-x.html
   My bibliography  Save this article

Efficient and stable blue quantum dot light-emitting diode

Author

Listed:
  • Taehyung Kim

    (Samsung Electronics)

  • Kwang-Hee Kim

    (Samsung Electronics)

  • Sungwoo Kim

    (Samsung Electronics)

  • Seon-Myeong Choi

    (Samsung Electronics)

  • Hyosook Jang

    (Samsung Electronics)

  • Hong-Kyu Seo

    (Samsung Electronics)

  • Heejae Lee

    (Samsung Electronics)

  • Dae-Young Chung

    (Samsung Electronics)

  • Eunjoo Jang

    (Samsung Electronics)

Abstract

The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots.

Suggested Citation

  • Taehyung Kim & Kwang-Hee Kim & Sungwoo Kim & Seon-Myeong Choi & Hyosook Jang & Hong-Kyu Seo & Heejae Lee & Dae-Young Chung & Eunjoo Jang, 2020. "Efficient and stable blue quantum dot light-emitting diode," Nature, Nature, vol. 586(7829), pages 385-389, October.
  • Handle: RePEc:nat:nature:v:586:y:2020:i:7829:d:10.1038_s41586-020-2791-x
    DOI: 10.1038/s41586-020-2791-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2791-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2791-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Long Lin & Meng-Cong Zheng, 2024. "An Empirical Investigation on the Visual Imagery of Augmented Reality User Interfaces for Smart Electric Vehicles Based on Kansei Engineering and FAHP-GRA," Mathematics, MDPI, vol. 12(17), pages 1-21, August.
    2. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:586:y:2020:i:7829:d:10.1038_s41586-020-2791-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.