IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7826d10.1038_s41586-020-2725-7.html
   My bibliography  Save this article

Bridging of DNA breaks activates PARP2–HPF1 to modify chromatin

Author

Listed:
  • Silvija Bilokapic

    (St Jude Children’s Research Hospital)

  • Marcin J. Suskiewicz

    (University of Oxford)

  • Ivan Ahel

    (University of Oxford)

  • Mario Halic

    (St Jude Children’s Research Hospital)

Abstract

Breaks in DNA strands recruit the protein PARP1 and its paralogue PARP2 to modify histones and other substrates through the addition of mono- and poly(ADP-ribose) (PAR)1–5. In the DNA damage responses, this post-translational modification occurs predominantly on serine residues6–8 and requires HPF1, an accessory factor that switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine9,10. Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and provides an anchor for the recruitment of downstream signalling and repair factors to the sites of DNA breaks2,11. Here, to understand the molecular mechanism by which PARP enzymes recognize DNA breaks within chromatin, we determined the cryo-electron-microscopic structure of human PARP2–HPF1 bound to a nucleosome. This showed that PARP2–HPF1 bridges two nucleosomes, with the broken DNA aligned in a position suitable for ligation, revealing the initial step in the repair of double-strand DNA breaks. The bridging induces structural changes in PARP2 that signal the recognition of a DNA break to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD+ and substrate, which may enable PARP enzymes to act processively while bound to chromatin. The processes of PARP activation and the PARP catalytic cycle we describe can explain mechanisms of resistance to PARP inhibitors and will aid the development of better inhibitors as cancer treatments12–16.

Suggested Citation

  • Silvija Bilokapic & Marcin J. Suskiewicz & Ivan Ahel & Mario Halic, 2020. "Bridging of DNA breaks activates PARP2–HPF1 to modify chromatin," Nature, Nature, vol. 585(7826), pages 609-613, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7826:d:10.1038_s41586-020-2725-7
    DOI: 10.1038/s41586-020-2725-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2725-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2725-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro Fontana & Sara C. Buch-Larsen & Osamu Suyari & Rebecca Smith & Marcin J. Suskiewicz & Kira Schützenhofer & Antonio Ariza & Johannes Gregor Matthias Rack & Michael L. Nielsen & Ivan Ahel, 2023. "Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ivo A. Hendriks & Sara C. Buch-Larsen & Evgeniia Prokhorova & Jonas D. Elsborg & Alexandra K.L.F.S. Rebak & Kang Zhu & Dragana Ahel & Claudia Lukas & Ivan Ahel & Michael L. Nielsen, 2021. "The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7826:d:10.1038_s41586-020-2725-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.