IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7825d10.1038_s41586-020-2707-9.html
   My bibliography  Save this article

Reverse and forward engineering of Drosophila corneal nanocoatings

Author

Listed:
  • Mikhail Kryuchkov

    (University of Geneva
    University of Lausanne)

  • Oleksii Bilousov

    (University of Lausanne)

  • Jannis Lehmann

    (ETH Zurich)

  • Manfred Fiebig

    (ETH Zurich)

  • Vladimir L. Katanaev

    (University of Geneva
    University of Lausanne
    Far Eastern Federal University)

Abstract

Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material1,2. These nanocoatings have also been shown to provide anti-adhesive functionality3. The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures4. This diversity can be attributed to a reaction–diffusion mechanism4 and patterning principles developed by Alan Turing5, which have applications in numerous biological settings6. The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns4. Here we demonstrate a clear link between the morphology and function of the nanocoatings on Drosophila corneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.

Suggested Citation

  • Mikhail Kryuchkov & Oleksii Bilousov & Jannis Lehmann & Manfred Fiebig & Vladimir L. Katanaev, 2020. "Reverse and forward engineering of Drosophila corneal nanocoatings," Nature, Nature, vol. 585(7825), pages 383-389, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2707-9
    DOI: 10.1038/s41586-020-2707-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2707-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2707-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian A. Hodge & Geoffrey T. Meyerhof & Subhash D. Katewa & Ting Lian & Charles Lau & Sudipta Bar & Nicole Y. Leung & Menglin Li & David Li-Kroeger & Simon Melov & Birgit Schilling & Craig Montell & P, 2022. "Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Ma, Xiaolu & Zhao, Jin & Wang, Run & Li, Yuyao & Liu, Chuanyong & Liu, Yong, 2022. "Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2707-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.