IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v584y2020i7820d10.1038_s41586-020-2567-3.html
   My bibliography  Save this article

Evidence of flat bands and correlated states in buckled graphene superlattices

Author

Listed:
  • Jinhai Mao

    (Rutgers University
    University of Chinese Academy of Sciences)

  • Slaviša P. Milovanović

    (Universiteit Antwerpen)

  • Miša Anđelković

    (Universiteit Antwerpen)

  • Xinyuan Lai

    (Rutgers University)

  • Yang Cao

    (University of Manchester)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Lucian Covaci

    (Universiteit Antwerpen)

  • Francois M. Peeters

    (Universiteit Antwerpen)

  • Andre K. Geim

    (University of Manchester)

  • Yuhang Jiang

    (Rutgers University
    University of Chinese Academy of Sciences)

  • Eva Y. Andrei

    (Rutgers University)

Abstract

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1–5. An example is the creation of weakly dispersive, ‘flat’ bands in bilayer graphene for certain ‘magic’ angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron–electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7–9, resulting in a periodically modulated pseudo-magnetic field10–14, which in turn creates a ‘post-graphene’ material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15–17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

Suggested Citation

  • Jinhai Mao & Slaviša P. Milovanović & Miša Anđelković & Xinyuan Lai & Yang Cao & Kenji Watanabe & Takashi Taniguchi & Lucian Covaci & Francois M. Peeters & Andre K. Geim & Yuhang Jiang & Eva Y. Andrei, 2020. "Evidence of flat bands and correlated states in buckled graphene superlattices," Nature, Nature, vol. 584(7820), pages 215-220, August.
  • Handle: RePEc:nat:nature:v:584:y:2020:i:7820:d:10.1038_s41586-020-2567-3
    DOI: 10.1038/s41586-020-2567-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2567-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2567-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si, Nan & Guan, Yin-Yan & Gao, Wei-Chun & Guo, An-Bang & Zhang, Yan-Li & Jiang, Wei, 2022. "Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Lu Cao & Wenyao Liu & Geng Li & Guangyang Dai & Qi Zheng & Yuxin Wang & Kun Jiang & Shiyu Zhu & Li Huang & Lingyuan Kong & Fazhi Yang & Xiancheng Wang & Wu Zhou & Xiao Lin & Jiangping Hu & Changqing J, 2021. "Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:584:y:2020:i:7820:d:10.1038_s41586-020-2567-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.