Author
Listed:
- Rosa I. Martinez-Garcia
(Brown University
Brown University
Brown University)
- Bettina Voelcker
(Brown University
New York University)
- Julia B. Zaltsman
(Brown University
Brown University)
- Saundra L. Patrick
(Brown University
Brown University)
- Tanya R. Stevens
(Brown University
Brown University)
- Barry W. Connors
(Brown University
Brown University)
- Scott J. Cruikshank
(Brown University
University of Alabama at Birmingham
University of Alabama at Birmingham
University of Alabama at Birmingham)
Abstract
Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3–6. Although the importance of the TRN has long been recognised7–9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells—located in the central core—connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells—which reside along the surrounding edges of the TRN—synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10–12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry—a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.
Suggested Citation
Rosa I. Martinez-Garcia & Bettina Voelcker & Julia B. Zaltsman & Saundra L. Patrick & Tanya R. Stevens & Barry W. Connors & Scott J. Cruikshank, 2020.
"Two dynamically distinct circuits drive inhibition in the sensory thalamus,"
Nature, Nature, vol. 583(7818), pages 813-818, July.
Handle:
RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2512-5
DOI: 10.1038/s41586-020-2512-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Weihua Ding & Liuyue Yang & Eleanor Shi & Bowon Kim & Sarah Low & Kun Hu & Lei Gao & Ping Chen & Wei Ding & David Borsook & Andrew Luo & Jee Hyun Choi & Changning Wang & Oluwaseun Akeju & Jun Yang & C, 2023.
"The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption,"
Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Jun Ma & John J. O’Malley & Malaz Kreiker & Yan Leng & Isbah Khan & Morgan Kindel & Mario A. Penzo, 2024.
"Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus,"
Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2512-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.