Author
Listed:
- Mark A. Norell
(American Museum of Natural History)
- Jasmina Wiemann
(Yale University)
- Matteo Fabbri
(Yale University)
- Congyu Yu
(American Museum of Natural History)
- Claudia A. Marsicano
(Universidad de Buenos Aires)
- Anita Moore-Nall
(Montana State University)
- David J. Varricchio
(Montana State University)
- Diego Pol
(CONICET, Museo Paleontológico Egidio Feruglio)
- Darla K. Zelenitsky
(University of Calgary)
Abstract
Calcified eggshells protect developing embryos against environmental stress and contribute to reproductive success1. As modern crocodilians and birds lay hard-shelled eggs, this eggshell type has been inferred for non-avian dinosaurs. Known dinosaur eggshells are characterized by an innermost membrane, an overlying protein matrix containing calcite, and an outermost waxy cuticle2–7. The calcitic eggshell consists of one or more ultrastructural layers that differ markedly among the three major dinosaur clades, as do the configurations of respiratory pores. So far, only hadrosaurid, a few sauropodomorph and tetanuran eggshells have been discovered; the paucity of the fossil record and the lack of intermediate eggshell types challenge efforts to homologize eggshell structures across all dinosaurs8–18. Here we present mineralogical, organochemical and ultrastructural evidence for an originally non-biomineralized, soft-shelled nature of exceptionally preserved ornithischian Protoceratops and basal sauropodomorph Mussaurus eggs. Statistical evaluation of in situ Raman spectra obtained for a representative set of hard- and soft-shelled, fossil and extant diapsid eggshells clusters the originally organic but secondarily phosphatized Protoceratops and the organic Mussaurus eggshells with soft, non-biomineralized eggshells. Histology corroborates the organic composition of these soft-shelled dinosaur eggs, revealing a stratified arrangement resembling turtle soft eggshell. Through an ancestral-state reconstruction of composition and ultrastructure, we compare eggshells from Protoceratops and Mussaurus with those from other diapsids, revealing that the first dinosaur egg was soft-shelled. The calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era, explaining the bias towards eggshells of derived dinosaurs in the fossil record.
Suggested Citation
Mark A. Norell & Jasmina Wiemann & Matteo Fabbri & Congyu Yu & Claudia A. Marsicano & Anita Moore-Nall & David J. Varricchio & Diego Pol & Darla K. Zelenitsky, 2020.
"The first dinosaur egg was soft,"
Nature, Nature, vol. 583(7816), pages 406-410, July.
Handle:
RePEc:nat:nature:v:583:y:2020:i:7816:d:10.1038_s41586-020-2412-8
DOI: 10.1038/s41586-020-2412-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7816:d:10.1038_s41586-020-2412-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.