IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7814d10.1038_s41586-020-2335-4.html
   My bibliography  Save this article

Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1

Author

Listed:
  • Michael David Clark

    (The University of Chicago)

  • Gustavo F. Contreras

    (The University of Chicago)

  • Rong Shen

    (The University of Chicago)

  • Eduardo Perozo

    (The University of Chicago)

Abstract

Voltage-gated potassium (Kv) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges1–3, the general determinants of channel gating polarity remain poorly understood4. Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped Kv channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated Kv channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor–pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5–7 Å can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels5, and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.

Suggested Citation

  • Michael David Clark & Gustavo F. Contreras & Rong Shen & Eduardo Perozo, 2020. "Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1," Nature, Nature, vol. 583(7814), pages 145-149, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7814:d:10.1038_s41586-020-2335-4
    DOI: 10.1038/s41586-020-2335-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2335-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2335-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verena Burtscher & Jonathan Mount & Jian Huang & John Cowgill & Yongchang Chang & Kathleen Bickel & Jianhan Chen & Peng Yuan & Baron Chanda, 2024. "Structural basis for hyperpolarization-dependent opening of human HCN1 channel," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Mingfeng Zhang & Yuanyue Shan & Duanqing Pei, 2023. "Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Carlos A. Z. Bassetto & Flavio Costa & Carlo Guardiani & Francisco Bezanilla & Alberto Giacomello, 2023. "Noncanonical electromechanical coupling paths in cardiac hERG potassium channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yaming Lu & Miao Yu & Yutian Jia & Fan Yang & Yanming Zhang & Xia Xu & Xiaomin Li & Fan Yang & Jianlin Lei & Yi Wang & Guanghui Yang, 2022. "Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7814:d:10.1038_s41586-020-2335-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.