Author
Listed:
- Bryan C. Paulus
(Michigan State University)
- Sara L. Adelman
(Michigan State University)
- Lindsey L. Jamula
(Michigan State University)
- James K. McCusker
(Michigan State University)
Abstract
Design-specific control over excited-state dynamics is necessary for any application seeking to convert light into chemical potential. Such control is especially desirable in iron(ii)-based chromophores, which are an Earth-abundant option for a wide range of photo-induced electron-transfer applications including solar energy conversion1 and catalysis2. However, the sub-200-femtosecond lifetimes of the redox-active metal-to-ligand charge transfer (MLCT) excited states typically encountered in these compounds have largely precluded their widespread use3. Here we show that the MLCT lifetime of an iron(ii) complex can be manipulated using information from excited-state quantum coherences as a guide to implementing synthetic modifications that can disrupt the reaction coordinate associated with MLCT decay. We developed a structurally tunable molecular platform in which vibronic coherences—that is, coherences reflecting a coupling of vibrational and electronic degrees of freedom—were observed in ultrafast time-resolved absorption measurements after MLCT excitation of the molecule. Following visualization of the vibrational modes associated with these coherences, we synthetically modified an iron(ii) chromophore to interfere with these specific atomic motions. The redesigned compound exhibits a MLCT lifetime that is more than a factor of 20 longer than that of the parent compound, indicating that the structural modification at least partially decoupled these degrees of freedom from the population dynamics associated with the electronic-state evolution of the system. These results demonstrate that using excited-state coherence data may be used to tailor ultrafast excited-state dynamics through targeted synthetic design.
Suggested Citation
Bryan C. Paulus & Sara L. Adelman & Lindsey L. Jamula & James K. McCusker, 2020.
"Leveraging excited-state coherence for synthetic control of ultrafast dynamics,"
Nature, Nature, vol. 582(7811), pages 214-218, June.
Handle:
RePEc:nat:nature:v:582:y:2020:i:7811:d:10.1038_s41586-020-2353-2
DOI: 10.1038/s41586-020-2353-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7811:d:10.1038_s41586-020-2353-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.