IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7803d10.1038_s41586-020-2156-5.html
   My bibliography  Save this article

LRP1 is a master regulator of tau uptake and spread

Author

Listed:
  • Jennifer N. Rauch

    (University of California)

  • Gabriel Luna

    (University of California)

  • Elmer Guzman

    (University of California)

  • Morgane Audouard

    (University of California)

  • Collin Challis

    (California Institute of Technology)

  • Youssef E. Sibih

    (University of California)

  • Carolina Leshuk

    (University of California)

  • Israel Hernandez

    (University of California)

  • Susanne Wegmann

    (German Center for Neurodegenerative Diseases (DZNE))

  • Bradley T. Hyman

    (Harvard Medical School)

  • Viviana Gradinaru

    (California Institute of Technology)

  • Martin Kampmann

    (University of California
    Chan Zuckerberg Biohub)

  • Kenneth S. Kosik

    (University of California)

Abstract

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies—including Alzheimer’s disease, frontotemporal dementia and chronic traumatic encephalopathy1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.

Suggested Citation

  • Jennifer N. Rauch & Gabriel Luna & Elmer Guzman & Morgane Audouard & Collin Challis & Youssef E. Sibih & Carolina Leshuk & Israel Hernandez & Susanne Wegmann & Bradley T. Hyman & Viviana Gradinaru & M, 2020. "LRP1 is a master regulator of tau uptake and spread," Nature, Nature, vol. 580(7803), pages 381-385, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7803:d:10.1038_s41586-020-2156-5
    DOI: 10.1038/s41586-020-2156-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2156-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2156-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Meihua Jin & Hiroki Shiwaku & Hikari Tanaka & Takayuki Obita & Sakurako Ohuchi & Yuki Yoshioka & Xiaocen Jin & Kanoh Kondo & Kyota Fujita & Hidenori Homma & Kazuyuki Nakajima & Mineyuki Mizuguchi & Hi, 2021. "Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    3. Nathaniel S. Chapman & Ruben J. G. Hulswit & Jonna L. B. Westover & Robert Stass & Guido C. Paesen & Elad Binshtein & Joseph X. Reidy & Taylor B. Engdahl & Laura S. Handal & Alejandra Flores & Brian B, 2023. "Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jiyeon Lee & Julie M. Dimitry & Jong Hee Song & Minsoo Son & Patrick W. Sheehan & Melvin W. King & G. Travis Tabor & Young Ah Goo & Mitchell A. Lazar & Leonard Petrucelli & Erik S. Musiek, 2023. "Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7803:d:10.1038_s41586-020-2156-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.