IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7800d10.1038_s41586-020-2097-z.html
   My bibliography  Save this article

Phase separation directs ubiquitination of gene-body nucleosomes

Author

Listed:
  • Laura D. Gallego

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

  • Maren Schneider

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

  • Chitvan Mittal

    (Pennsylvania State University)

  • Anete Romanauska

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

  • Ricardo M. Gudino Carrillo

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

  • Tobias Schubert

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

  • B. Franklin Pugh

    (Pennsylvania State University)

  • Alwin Köhler

    (Medical University of Vienna, Vienna Biocenter Campus (VBC))

Abstract

The conserved yeast E3 ubiquitin ligase Bre1 and its partner, the E2 ubiquitin-conjugating enzyme Rad6, monoubiquitinate histone H2B across gene bodies during the transcription cycle1. Although processive ubiquitination might—in principle—arise from Bre1 and Rad6 travelling with RNA polymerase II2, the mechanism of H2B ubiquitination across genic nucleosomes remains unclear. Here we implicate liquid–liquid phase separation3 as the underlying mechanism. Biochemical reconstitution shows that Bre1 binds the scaffold protein Lge1, which possesses an intrinsically disordered region that phase-separates via multivalent interactions. The resulting condensates comprise a core of Lge1 encapsulated by an outer catalytic shell of Bre1. This layered liquid recruits Rad6 and the nucleosomal substrate, which accelerates the ubiquitination of H2B. In vivo, the condensate-forming region of Lge1 is required to ubiquitinate H2B in gene bodies beyond the +1 nucleosome. Our data suggest that layered condensates of histone-modifying enzymes generate chromatin-associated ‘reaction chambers’, with augmented catalytic activity along gene bodies. Equivalent processes may occur in human cells, and cause neurological disease when impaired.

Suggested Citation

  • Laura D. Gallego & Maren Schneider & Chitvan Mittal & Anete Romanauska & Ricardo M. Gudino Carrillo & Tobias Schubert & B. Franklin Pugh & Alwin Köhler, 2020. "Phase separation directs ubiquitination of gene-body nucleosomes," Nature, Nature, vol. 579(7800), pages 592-597, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2097-z
    DOI: 10.1038/s41586-020-2097-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2097-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2097-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Shuang-zhou Peng & Xiao-hui Chen & Si-jie Chen & Jie Zhang & Chuan-ying Wang & Wei-rong Liu & Duo Zhang & Ying Su & Xiao-kun Zhang, 2021. "Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Dongdong Qin & Yayun Gu & Yu Zhang & Shu Wang & Tao Jiang & Yao Wang & Cheng Wang & Chang Chen & Tao Zhang & Weiya Xu & Hanben Wang & Ke Zhang & Liangjun Hu & Lufan Li & Wei Xie & Xin Wu & Zhibin Hu, 2023. "Phase-separated CCER1 coordinates the histone-to-protamine transition and male fertility," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2097-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.