IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v578y2020i7794d10.1038_s41586-020-1966-9.html
   My bibliography  Save this article

Zucchini consensus motifs determine the mechanism of pre-piRNA production

Author

Listed:
  • Natsuko Izumi

    (The University of Tokyo)

  • Keisuke Shoji

    (The University of Tokyo
    Utsunomiya University)

  • Yutaka Suzuki

    (The University of Tokyo)

  • Susumu Katsuma

    (The University of Tokyo)

  • Yukihide Tomari

    (The University of Tokyo
    The University of Tokyo)

Abstract

PIWI-interacting RNAs (piRNAs) of between approximately 24 and 31 nucleotides in length guide PIWI proteins to silence transposons in animal gonads, thereby ensuring fertility1. In the biogenesis of piRNAs, PIWI proteins are first loaded with 5′-monophosphorylated RNA fragments called pre-pre-piRNAs, which then undergo endonucleolytic cleavage to produce pre-piRNAs1,2. Subsequently, the 3′-ends of pre-piRNAs are trimmed by the exonuclease Trimmer (PNLDC1 in mouse)3–6 and 2′-O-methylated by the methyltransferase Hen1 (HENMT1 in mouse)7–9, generating mature piRNAs. It is assumed that the endonuclease Zucchini (MitoPLD in mouse) is a major enzyme catalysing the cleavage of pre-pre-piRNAs into pre-piRNAs10–13. However, direct evidence for this model is lacking, and how pre-piRNAs are generated remains unclear. Here, to analyse pre-piRNA production, we established a Trimmer-knockout silkworm cell line and derived a cell-free system that faithfully recapitulates Zucchini-mediated cleavage of PIWI-loaded pre-pre-piRNAs. We found that pre-piRNAs are generated by parallel Zucchini-dependent and -independent mechanisms. Cleavage by Zucchini occurs at previously unrecognized consensus motifs on pre-pre-piRNAs, requires the RNA helicase Armitage, and is accompanied by 2′-O-methylation of pre-piRNAs. By contrast, slicing of pre-pre-piRNAs with weak Zucchini motifs is achieved by downstream complementary piRNAs, producing pre-piRNAs without 2′-O-methylation. Regardless of the endonucleolytic mechanism, pre-piRNAs are matured by Trimmer and Hen1. Our findings highlight multiplexed processing of piRNA precursors that supports robust and flexible piRNA biogenesis.

Suggested Citation

  • Natsuko Izumi & Keisuke Shoji & Yutaka Suzuki & Susumu Katsuma & Yukihide Tomari, 2020. "Zucchini consensus motifs determine the mechanism of pre-piRNA production," Nature, Nature, vol. 578(7794), pages 311-316, February.
  • Handle: RePEc:nat:nature:v:578:y:2020:i:7794:d:10.1038_s41586-020-1966-9
    DOI: 10.1038/s41586-020-1966-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-1966-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-1966-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birgit Stallmeyer & Clara Bühlmann & Rytis Stakaitis & Ann-Kristin Dicke & Farah Ghieh & Luisa Meier & Ansgar Zoch & David MacKenzie MacLeod & Johanna Steingröver & Özlem Okutman & Daniela Fietz & Adr, 2024. "Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Susanne Bornelöv & Benjamin Czech & Gregory J. Hannon, 2022. "An evolutionarily conserved stop codon enrichment at the 5′ ends of mammalian piRNAs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:578:y:2020:i:7794:d:10.1038_s41586-020-1966-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.