IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7792d10.1038_s41586-020-1933-5.html
   My bibliography  Save this article

Structure of the transcription coactivator SAGA

Author

Listed:
  • Haibo Wang

    (Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology)

  • Christian Dienemann

    (Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology)

  • Alexandra Stützer

    (Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry)

  • Henning Urlaub

    (Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry
    University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group)

  • Alan C. M. Cheung

    (University College London
    Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College)

  • Patrick Cramer

    (Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology)

Abstract

Gene transcription by RNA polymerase II is regulated by activator proteins that recruit the coactivator complexes SAGA (Spt–Ada–Gcn5–acetyltransferase)1,2 and transcription factor IID (TFIID)2–4. SAGA is required for all regulated transcription5 and is conserved among eukaryotes6. SAGA contains four modules7–9: the activator-binding Tra1 module, the core module, the histone acetyltransferase (HAT) module and the histone deubiquitination (DUB) module. Previous studies provided partial structures10–14, but the structure of the central core module is unknown. Here we present the cryo-electron microscopy structure of SAGA from the yeast Saccharomyces cerevisiae and resolve the core module at 3.3 Å resolution. The core module consists of subunits Taf5, Sgf73 and Spt20, and a histone octamer-like fold. The octamer-like fold comprises the heterodimers Taf6–Taf9, Taf10–Spt7 and Taf12–Ada1, and two histone-fold domains in Spt3. Spt3 and the adjacent subunit Spt8 interact with the TATA box-binding protein (TBP)2,7,15–17. The octamer-like fold and its TBP-interacting region are similar in TFIID, whereas Taf5 and the Taf6 HEAT domain adopt distinct conformations. Taf12 and Spt20 form flexible connections to the Tra1 module, whereas Sgf73 tethers the DUB module. Binding of a nucleosome to SAGA displaces the HAT and DUB modules from the core-module surface, allowing the DUB module to bind one face of an ubiquitinated nucleosome.

Suggested Citation

  • Haibo Wang & Christian Dienemann & Alexandra Stützer & Henning Urlaub & Alan C. M. Cheung & Patrick Cramer, 2020. "Structure of the transcription coactivator SAGA," Nature, Nature, vol. 577(7792), pages 717-720, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7792:d:10.1038_s41586-020-1933-5
    DOI: 10.1038/s41586-020-1933-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-1933-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-1933-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duo Wang & Fuxiang Yan & Ping Wu & Kexue Ge & Muchun Li & Tingting Li & Ying Gao & Chao Peng & Yong Chen, 2022. "Global profiling of regulatory elements in the histone benzoylation pathway," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7792:d:10.1038_s41586-020-1933-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.