IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7791d10.1038_s41586-019-1919-3.html
   My bibliography  Save this article

Fast two-qubit logic with holes in germanium

Author

Listed:
  • N. W. Hendrickx

    (QuTech, Delft University of Technology
    Delft University of Technology)

  • D. P. Franke

    (QuTech, Delft University of Technology
    Delft University of Technology)

  • A. Sammak

    (QuTech, Delft University of Technology
    Netherlands Organisation for Applied Scientific Research (TNO))

  • G. Scappucci

    (QuTech, Delft University of Technology
    Delft University of Technology)

  • M. Veldhorst

    (QuTech, Delft University of Technology
    Delft University of Technology)

Abstract

Universal quantum information processing requires the execution of single-qubit and two-qubit logic. Across all qubit realizations1, spin qubits in quantum dots have great promise to become the central building block for quantum computation2. Excellent quantum dot control can be achieved in gallium arsenide3–5, and high-fidelity qubit rotations and two-qubit logic have been demonstrated in silicon6–9, but universal quantum logic implemented with local control has yet to be demonstrated. Here we make this step by combining all of these desirable aspects using hole quantum dots in germanium. Good control over tunnel coupling and detuning is obtained by exploiting quantum wells with very low disorder, enabling operation at the charge symmetry point for increased qubit performance. Spin–orbit coupling obviates the need for microscopic elements close to each qubit and enables rapid qubit control with driving frequencies exceeding 100 MHz. We demonstrate a fast universal quantum gate set composed of single-qubit gates with a fidelity of 99.3 per cent and a gate time of 20 nanoseconds, and two-qubit logic operations executed within 75 nanoseconds. Planar germanium has thus matured within a year from a material that can host quantum dots to a platform enabling two-qubit logic, positioning itself as an excellent material for use in quantum information applications.

Suggested Citation

  • N. W. Hendrickx & D. P. Franke & A. Sammak & G. Scappucci & M. Veldhorst, 2020. "Fast two-qubit logic with holes in germanium," Nature, Nature, vol. 577(7791), pages 487-491, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7791:d:10.1038_s41586-019-1919-3
    DOI: 10.1038/s41586-019-1919-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1919-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1919-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. W. I. L. Lawrie & M. Rimbach-Russ & F. van Riggelen & N. W. Hendrickx & S. L. de Snoo & A. Sammak & G. Scappucci & J. Helsen & M. Veldhorst, 2023. "Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Franco Palma & Fabian Oppliger & Wonjin Jang & Stefano Bosco & Marián Janík & Stefano Calcaterra & Georgios Katsaros & Giovanni Isella & Daniel Loss & Pasquale Scarlino, 2024. "Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7791:d:10.1038_s41586-019-1919-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.