IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7790d10.1038_s41586-019-1820-0.html
   My bibliography  Save this article

FACT caught in the act of manipulating the nucleosome

Author

Listed:
  • Yang Liu

    (University of Colorado at Boulder)

  • Keda Zhou

    (University of Colorado at Boulder)

  • Naifu Zhang

    (The University of Texas at Dallas)

  • Hui Wei

    (New York Structural Biology Center)

  • Yong Zi Tan

    (New York Structural Biology Center
    Columbia University
    Columbia University)

  • Zhening Zhang

    (New York Structural Biology Center
    Columbia University Medical Center
    Columbia University Medical Center)

  • Bridget Carragher

    (New York Structural Biology Center)

  • Clinton S. Potter

    (New York Structural Biology Center)

  • Sheena D’Arcy

    (The University of Texas at Dallas)

  • Karolin Luger

    (University of Colorado at Boulder
    Howard Hughes Medical Institute)

Abstract

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as ‘facilitates chromatin transcription’ (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen–deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A–H2B, allowing FACT–H2A–H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A–H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A–H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A–H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.

Suggested Citation

  • Yang Liu & Keda Zhou & Naifu Zhang & Hui Wei & Yong Zi Tan & Zhening Zhang & Bridget Carragher & Clinton S. Potter & Sheena D’Arcy & Karolin Luger, 2020. "FACT caught in the act of manipulating the nucleosome," Nature, Nature, vol. 577(7790), pages 426-431, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1820-0
    DOI: 10.1038/s41586-019-1820-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1820-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1820-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marios G. Koliopoulos & Reyhan Muhammad & Theodoros I. Roumeliotis & Fabienne Beuron & Jyoti S. Choudhary & Claudio Alfieri, 2022. "Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Anfeng Luo & Jingwei Kong & Jun Chen & Xue Xiao & Jie Lan & Xiaorong Li & Cuifang Liu & Peng-Ye Wang & Guohong Li & Wei Li & Ping Chen, 2023. "H2B ubiquitination recruits FACT to maintain a stable altered nucleosome state for transcriptional activation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1820-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.