Author
Listed:
- E. D. L. Rienks
(Elektronenspeicherring BESSY II
Institut für Festkörperphysik, Technische Universität Dresden
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden)
- S. Wimmer
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität)
- J. Sánchez-Barriga
(Elektronenspeicherring BESSY II)
- O. Caha
(Masaryk University)
- P. S. Mandal
(Elektronenspeicherring BESSY II
Institut für Physik und Astronomie, Universität Potsdam)
- J. Růžička
(Masaryk University)
- A. Ney
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität)
- H. Steiner
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität)
- V. V. Volobuev
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität
National Technical University ‘Kharkiv Polytechnic Institute’
Polish Academy of Sciences)
- H. Groiss
(Zentrum für Oberflächen- und Nanoanalytik, Johannes Kepler Universität)
- M. Albu
(Graz University of Technology)
- G. Kothleitner
(Graz University of Technology)
- J. Michalička
(Brno University of Technology)
- S. A. Khan
(University of West Bohemia)
- J. Minár
(University of West Bohemia)
- H. Ebert
(Ludwig-Maximilians-Universität)
- G. Bauer
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität)
- F. Freyse
(Elektronenspeicherring BESSY II
Institut für Physik und Astronomie, Universität Potsdam)
- A. Varykhalov
(Elektronenspeicherring BESSY II)
- O. Rader
(Elektronenspeicherring BESSY II)
- G. Springholz
(Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität)
Abstract
Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1–8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.
Suggested Citation
E. D. L. Rienks & S. Wimmer & J. Sánchez-Barriga & O. Caha & P. S. Mandal & J. Růžička & A. Ney & H. Steiner & V. V. Volobuev & H. Groiss & M. Albu & G. Kothleitner & J. Michalička & S. A. Khan & J. M, 2019.
"Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures,"
Nature, Nature, vol. 576(7787), pages 423-428, December.
Handle:
RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1826-7
DOI: 10.1038/s41586-019-1826-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1826-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.