IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7786d10.1038_s41586-019-1795-x.html
   My bibliography  Save this article

Structure and drug resistance of the Plasmodium falciparum transporter PfCRT

Author

Listed:
  • Jonathan Kim

    (Columbia University Irving Medical Center)

  • Yong Zi Tan

    (Columbia University Irving Medical Center
    Simons Electron Microscopy Center, New York Structural Biology Center)

  • Kathryn J. Wicht

    (Columbia University Irving Medical Center)

  • Satchal K. Erramilli

    (University of Chicago)

  • Satish K. Dhingra

    (Columbia University Irving Medical Center)

  • John Okombo

    (Columbia University Irving Medical Center)

  • Jeremie Vendome

    (Schrödinger)

  • Laura M. Hagenah

    (Columbia University Irving Medical Center)

  • Sabrina I. Giacometti

    (Columbia University Irving Medical Center)

  • Audrey L. Warren

    (Columbia University Irving Medical Center)

  • Kamil Nosol

    (University of Chicago)

  • Paul D. Roepe

    (Georgetown University
    Georgetown University)

  • Clinton S. Potter

    (Simons Electron Microscopy Center, New York Structural Biology Center
    Columbia University Irving Medical Center)

  • Bridget Carragher

    (Simons Electron Microscopy Center, New York Structural Biology Center
    Columbia University Irving Medical Center)

  • Anthony A. Kossiakoff

    (University of Chicago)

  • Matthias Quick

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center
    New York State Psychiatric Institute)

  • David A. Fidock

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center)

  • Filippo Mancia

    (Columbia University Irving Medical Center)

Abstract

The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment of malaria has relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide1. Clinical resistance to the chemically related current first-line combination drug piperaquine (PPQ) has now emerged regionally, reducing its efficacy2. Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum CQ-resistance transporter PfCRT, a 49-kDa member of the drug/metabolite transporter superfamily that traverses the membrane of the acidic digestive vacuole of the parasite3–9. Here we present the structure, at 3.2 Å resolution, of the PfCRT isoform of CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy and antigen-binding fragment technology. Mutations that contribute to CQ and PPQ resistance localize primarily to moderately conserved sites on distinct helices that line a central negatively charged cavity, indicating that this cavity is the principal site of interaction with the positively charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, and that these drugs are mutually competitive. The 7G8 isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism that drives CQ resistance5, but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America, respectively6,9, reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest that distinct mechanistic features mediate the resistance to CQ and PPQ in PfCRT variants. These data provide atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures.

Suggested Citation

  • Jonathan Kim & Yong Zi Tan & Kathryn J. Wicht & Satchal K. Erramilli & Satish K. Dhingra & John Okombo & Jeremie Vendome & Laura M. Hagenah & Sabrina I. Giacometti & Audrey L. Warren & Kamil Nosol & P, 2019. "Structure and drug resistance of the Plasmodium falciparum transporter PfCRT," Nature, Nature, vol. 576(7786), pages 315-320, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7786:d:10.1038_s41586-019-1795-x
    DOI: 10.1038/s41586-019-1795-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1795-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1795-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Guo & Victor Borda & Roland Laboulaye & Michele D. Spring & Mariusz Wojnarski & Brian A. Vesely & Joana C. Silva & Norman C. Waters & Timothy D. O’Connor & Shannon Takala-Harrison, 2024. "Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Fiona Berger & Guillermo M. Gomez & Cecilia P. Sanchez & Britta Posch & Gabrielle Planelles & Farzin Sohraby & Ariane Nunes-Alves & Michael Lanzer, 2023. "pH-dependence of the Plasmodium falciparum chloroquine resistance transporter is linked to the transport cycle," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Jianying Zhu & Qi Zhang & Hui Zhang & Zuoqiang Shi & Mingxu Hu & Chenglong Bao, 2023. "A minority of final stacks yields superior amplitude in single-particle cryo-EM," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7786:d:10.1038_s41586-019-1795-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.