IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7785d10.1038_s41586-019-1781-3.html
   My bibliography  Save this article

The structures and gating mechanism of human calcium homeostasis modulator 2

Author

Listed:
  • Wooyoung Choi

    (Van Andel Institute)

  • Nicolina Clemente

    (Van Andel Institute)

  • Weinan Sun

    (Oregon Health & Science University
    Janelia Research Campus)

  • Juan Du

    (Van Andel Institute)

  • Wei Lü

    (Van Andel Institute)

Abstract

Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca2+-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity1–3. Dysfunction of CALHMs has previously been linked to neurological disorders1. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca2+-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1–S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels4–8. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.

Suggested Citation

  • Wooyoung Choi & Nicolina Clemente & Weinan Sun & Juan Du & Wei Lü, 2019. "The structures and gating mechanism of human calcium homeostasis modulator 2," Nature, Nature, vol. 576(7785), pages 163-167, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1781-3
    DOI: 10.1038/s41586-019-1781-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1781-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1781-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Zhihui He & Yonghui Zhao & Michael J. Rau & James A. J. Fitzpatrick & Rajan Sah & Hongzhen Hu & Peng Yuan, 2023. "Structural and functional analysis of human pannexin 2 channel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Hang Zhang & Shiyu Wang & Zhenzhen Zhang & Mengzhuo Hou & Chunyu Du & Zhenye Zhao & Horst Vogel & Zhifang Li & Kaige Yan & Xiaokang Zhang & Jianping Lu & Yujie Liang & Shuguang Yuan & Daping Wang & Hu, 2023. "Cryo-EM structure of human heptameric pannexin 2 channel," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Johanna L. Syrjänen & Max Epstein & Ricardo Gómez & Hiro Furukawa, 2023. "Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1781-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.