IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7785d10.1038_s41586-019-1772-4.html
   My bibliography  Save this article

Sensorimotor experience remaps visual input to a heading-direction network

Author

Listed:
  • Yvette E. Fisher

    (Harvard Medical School)

  • Jenny Lu

    (Harvard Medical School)

  • Isabel D’Alessandro

    (Harvard Medical School)

  • Rachel I. Wilson

    (Harvard Medical School)

Abstract

In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation 1,2. In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time3,4. When a visual cue is present, the estimate of the network is more accurate1,3. Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space5. The axon of each R neuron overlaps with the dendrites of every compass neuron6, raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction7–12.

Suggested Citation

  • Yvette E. Fisher & Jenny Lu & Isabel D’Alessandro & Rachel I. Wilson, 2019. "Sensorimotor experience remaps visual input to a heading-direction network," Nature, Nature, vol. 576(7785), pages 121-125, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1772-4
    DOI: 10.1038/s41586-019-1772-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1772-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1772-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1772-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.