IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7784d10.1038_s41586-019-1752-8.html
   My bibliography  Save this article

Activity of caspase-8 determines plasticity between cell death pathways

Author

Listed:
  • Kim Newton

    (Genentech)

  • Katherine E. Wickliffe

    (Genentech)

  • Allie Maltzman

    (Genentech)

  • Debra L. Dugger

    (Genentech)

  • Rohit Reja

    (Genentech)

  • Yue Zhang

    (Genentech)

  • Merone Roose-Girma

    (Genentech)

  • Zora Modrusan

    (Genentech)

  • Meredith S. Sagolla

    (Genentech)

  • Joshua D. Webster

    (Genentech)

  • Vishva M. Dixit

    (Genentech)

Abstract

Caspase-8 is a protease with both pro-death and pro-survival functions: it mediates apoptosis induced by death receptors such as TNFR11, and suppresses necroptosis mediated by the kinase RIPK3 and the pseudokinase MLKL2–4. Mice that lack caspase-8 display MLKL-dependent embryonic lethality4, as do mice that express catalytically inactive CASP8(C362A)5. Casp8C362A/C362AMlkl−/− mice die during the perinatal period5, whereas Casp8−/−Mlkl−/− mice are viable4, which indicates that inactive caspase-8 also has a pro-death scaffolding function. Here we show that mutant CASP8(C362A) induces the formation of ASC (also known as PYCARD) specks, and caspase-1-dependent cleavage of GSDMD and caspases 3 and 7 in MLKL-deficient mouse intestines around embryonic day 18. Caspase-1 and its adaptor ASC contributed to the perinatal lethal phenotype because a number of Casp8C362A/C362AMlkl−/−Casp1−/− and Casp8C362A/C362AMlkl−/−Asc−/− mice survived beyond weaning. Transfection studies suggest that inactive caspase-8 adopts a distinct conformation to active caspase-8, enabling its prodomain to engage ASC. Upregulation of the lipopolysaccharide sensor caspase-11 in the intestines of both Casp8C362A/C362AMlkl−/− and Casp8C362A/C362AMlkl−/−Casp1−/− mice also contributed to lethality because Casp8C362A/C362AMlkl−/−Casp1−/−Casp11−/− (Casp11 is also known as Casp4) neonates survived more often than Casp8C362A/C362AMlkl−/−Casp1−/− neonates. Finally, Casp8C362A/C362ARipk3−/−Casp1−/−Casp11−/− mice survived longer than Casp8C362A/C362AMlkl−/−Casp1−/−Casp11−/− mice, indicating that a necroptosis-independent function of RIPK3 also contributes to lethality. Thus, unanticipated plasticity in death pathways is revealed when caspase-8-dependent apoptosis and MLKL-dependent necroptosis are inhibited.

Suggested Citation

  • Kim Newton & Katherine E. Wickliffe & Allie Maltzman & Debra L. Dugger & Rohit Reja & Yue Zhang & Merone Roose-Girma & Zora Modrusan & Meredith S. Sagolla & Joshua D. Webster & Vishva M. Dixit, 2019. "Activity of caspase-8 determines plasticity between cell death pathways," Nature, Nature, vol. 575(7784), pages 679-682, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1752-8
    DOI: 10.1038/s41586-019-1752-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1752-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1752-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1752-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.