IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7782d10.1038_s41586-019-1630-4.html
   My bibliography  Save this article

Axionic charge-density wave in the Weyl semimetal (TaSe4)2I

Author

Listed:
  • J. Gooth

    (Max Planck Institute for Chemical Physics of Solids)

  • B. Bradlyn

    (University of Illinois at Urbana-Champaign)

  • S. Honnali

    (Max Planck Institute for Chemical Physics of Solids)

  • C. Schindler

    (Max Planck Institute for Chemical Physics of Solids)

  • N. Kumar

    (Max Planck Institute for Chemical Physics of Solids)

  • J. Noky

    (Max Planck Institute for Chemical Physics of Solids)

  • Y. Qi

    (Max Planck Institute for Chemical Physics of Solids)

  • C. Shekhar

    (Max Planck Institute for Chemical Physics of Solids)

  • Y. Sun

    (Max Planck Institute for Chemical Physics of Solids)

  • Z. Wang

    (Institute of Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • B. A. Bernevig

    (Princeton University
    Freie Universität Berlin
    Max Planck Institute of Microstructure Physics)

  • C. Felser

    (Max Planck Institute for Chemical Physics of Solids)

Abstract

An axion insulator is a correlated topological phase, which is predicted to arise from the formation of a charge-density wave in a Weyl semimetal1,2—that is, a material in which electrons behave as massless chiral fermions. The accompanying sliding mode in the charge-density-wave phase—the phason—is an axion3,4 and is expected to cause anomalous magnetoelectric transport effects. However, this axionic charge-density wave has not yet been experimentally detected. Here we report the observation of a large positive contribution to the magnetoconductance in the sliding mode of the charge-density-wave Weyl semimetal (TaSe4)2I for collinear electric and magnetic fields. The positive contribution to the magnetoconductance originates from the anomalous axionic contribution of the chiral anomaly to the phason current, and is locked to the parallel alignment of the electric and magnetic fields. By rotating the magnetic field, we show that the angular dependence of the magnetoconductance is consistent with the anomalous transport of an axionic charge-density wave. Our results show that it is possible to find experimental evidence for axions in strongly correlated topological condensed matter systems, which have so far been elusive in any other context.

Suggested Citation

  • J. Gooth & B. Bradlyn & S. Honnali & C. Schindler & N. Kumar & J. Noky & Y. Qi & C. Shekhar & Y. Sun & Z. Wang & B. A. Bernevig & C. Felser, 2019. "Axionic charge-density wave in the Weyl semimetal (TaSe4)2I," Nature, Nature, vol. 575(7782), pages 315-319, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7782:d:10.1038_s41586-019-1630-4
    DOI: 10.1038/s41586-019-1630-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1630-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1630-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng Li & Haitao Yang & Peijie Jiang & Cong Wang & Qiuzhen Cheng & Shangjie Tian & Guangyuan Han & Chengmin Shen & Xiao Lin & Hechang Lei & Wei Ji & Ziqiang Wang & Hong-Jun Gao, 2022. "Chirality locking charge density waves in a chiral crystal," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Bing Cheng & Di Cheng & Tao Jiang & Wei Xia & Boqun Song & Martin Mootz & Liang Luo & Ilias E. Perakis & Yongxin Yao & Yanfeng Guo & Jigang Wang, 2024. "Chirality manipulation of ultrafast phase switches in a correlated CDW-Weyl semimetal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Wei-Chi Chiu & Guoqing Chang & Gennevieve Macam & Ilya Belopolski & Shin-Ming Huang & Robert Markiewicz & Jia-Xin Yin & Zi-Jia Cheng & Chi-Cheng Lee & Tay-Rong Chang & Feng-Chuan Chuang & Su-Yang Xu &, 2023. "Causal structure of interacting Weyl fermions in condensed matter systems," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Shuvam Sarkar & Joydipto Bhattacharya & Pampa Sadhukhan & Davide Curcio & Rajeev Dutt & Vipin Kumar Singh & Marco Bianchi & Arnab Pariari & Shubhankar Roy & Prabhat Mandal & Tanmoy Das & Philip Hofman, 2023. "Charge density wave induced nodal lines in LaTe3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Cong Li & Jianfeng Zhang & Yang Wang & Hongxiong Liu & Qinda Guo & Emile Rienks & Wanyu Chen & Francois Bertran & Huancheng Yang & Dibya Phuyal & Hanna Fedderwitz & Balasubramanian Thiagarajan & Macie, 2023. "Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7782:d:10.1038_s41586-019-1630-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.