IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7781d10.1038_s41586-019-1710-5.html
   My bibliography  Save this article

Dry double-sided tape for adhesion of wet tissues and devices

Author

Listed:
  • Hyunwoo Yuk

    (Massachusetts Institute of Technology)

  • Claudia E. Varela

    (Massachusetts Institute of Technology
    Harvard-MIT Program in Health Sciences and Technology)

  • Christoph S. Nabzdyk

    (Mayo Clinic
    Massachusetts General Hospital, Harvard Medical School)

  • Xinyu Mao

    (Massachusetts Institute of Technology)

  • Robert F. Padera

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Ellen T. Roche

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Harvard-MIT Program in Health Sciences and Technology)

  • Xuanhe Zhao

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Two dry surfaces can instantly adhere upon contact with each other through intermolecular forces such as hydrogen bonds, electrostatic interactions and van der Waals interactions1,2. However, such instant adhesion is challenging when wet surfaces such as body tissues are involved, because water separates the molecules of the two surfaces, preventing interactions3,4. Although tissue adhesives have potential advantages over suturing or stapling5,6, existing liquid or hydrogel tissue adhesives suffer from several limitations: weak bonding, low biological compatibility, poor mechanical match with tissues, and slow adhesion formation5–13. Here we propose an alternative tissue adhesive in the form of a dry double-sided tape (DST) made from a combination of a biopolymer (gelatin or chitosan) and crosslinked poly(acrylic acid) grafted with N-hydrosuccinimide ester. The adhesion mechanism of this DST relies on the removal of interfacial water from the tissue surface, resulting in fast temporary crosslinking to the surface. Subsequent covalent crosslinking with amine groups on the tissue surface further improves the adhesion stability and strength of the DST. In vitro mouse, in vivo rat and ex vivo porcine models show that the DST can achieve strong adhesion between diverse wet dynamic tissues and engineering solids within five seconds. The DST may be useful as a tissue adhesive and sealant, and in adhering wearable and implantable devices to wet tissues.

Suggested Citation

  • Hyunwoo Yuk & Claudia E. Varela & Christoph S. Nabzdyk & Xinyu Mao & Robert F. Padera & Ellen T. Roche & Xuanhe Zhao, 2019. "Dry double-sided tape for adhesion of wet tissues and devices," Nature, Nature, vol. 575(7781), pages 169-174, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1710-5
    DOI: 10.1038/s41586-019-1710-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1710-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1710-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1710-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.