IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7780d10.1038_s41586-019-1691-4.html
   My bibliography  Save this article

Evolution of the new head by gradual acquisition of neural crest regulatory circuits

Author

Listed:
  • Megan L. Martik

    (California Institute of Technology)

  • Shashank Gandhi

    (California Institute of Technology)

  • Benjamin R. Uy

    (California Institute of Technology)

  • J. Andrew Gillis

    (University of Cambridge
    Marine Biological Laboratory)

  • Stephen A. Green

    (California Institute of Technology)

  • Marcos Simoes-Costa

    (Cornell University)

  • Marianne E. Bronner

    (California Institute of Technology)

Abstract

The neural crest, an embryonic stem-cell population, is a vertebrate innovation that has been proposed to be a key component of the ‘new head’, which imbued vertebrates with predatory behaviour1,2. Here, to investigate how the evolution of neural crest cells affected the vertebrate body plan, we examined the molecular circuits that control neural crest development along the anteroposterior axis of a jawless vertebrate, the sea lamprey. Gene expression analysis showed that the cranial subpopulation of the neural crest of the lamprey lacks most components of a transcriptional circuit that is specific to the cranial neural crest in amniotes and confers the ability to form craniofacial cartilage onto non-cranial neural crest subpopulations3. Consistent with this, hierarchical clustering analysis revealed that the transcriptional profile of the lamprey cranial neural crest is more similar to the trunk neural crest of amniotes. Notably, analysis of the cranial neural crest in little skate and zebrafish embryos demonstrated that the transcriptional circuit that is specific to the cranial neural crest emerged via the gradual addition of network components to the neural crest of gnathostomes, which subsequently became restricted to the cephalic region. Our results indicate that the ancestral neural crest at the base of the vertebrate lineage possessed a trunk-like identity. We propose that the emergence of the cranial neural crest, by progressive assembly of an axial-specific regulatory circuit, allowed the elaboration of the new head during vertebrate evolution.

Suggested Citation

  • Megan L. Martik & Shashank Gandhi & Benjamin R. Uy & J. Andrew Gillis & Stephen A. Green & Marcos Simoes-Costa & Marianne E. Bronner, 2019. "Evolution of the new head by gradual acquisition of neural crest regulatory circuits," Nature, Nature, vol. 574(7780), pages 675-678, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1691-4
    DOI: 10.1038/s41586-019-1691-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1691-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1691-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alice M. H. Bedois & Hugo J. Parker & Andrew J. Price & Jason A. Morrison & Marianne E. Bronner & Robb Krumlauf, 2024. "Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1691-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.