IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7780d10.1038_s41586-019-1671-8.html
   My bibliography  Save this article

MHC-II neoantigens shape tumour immunity and response to immunotherapy

Author

Listed:
  • Elise Alspach

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Danielle M. Lussier

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Alexander P. Miceli

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Ilya Kizhvatov

    (Washington University School of Medicine)

  • Michel DuPage

    (Massachusetts Institute of Technology
    University of California Berkeley)

  • Adrienne M. Luoma

    (Dana-Farber Cancer Institute)

  • Wei Meng

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Cheryl F. Lichti

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Ekaterina Esaulova

    (Washington University School of Medicine)

  • Anthony N. Vomund

    (Washington University School of Medicine)

  • Daniele Runci

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Jeffrey P. Ward

    (Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

  • Matthew M. Gubin

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Ruan F. V. Medrano

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Cora D. Arthur

    (Washington University School of Medicine
    Washington University School of Medicine)

  • J. Michael White

    (Washington University School of Medicine)

  • Kathleen C. F. Sheehan

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Alex Chen

    (Washington University School of Medicine)

  • Kai W. Wucherpfennig

    (Dana-Farber Cancer Institute)

  • Tyler Jacks

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Emil R. Unanue

    (Washington University School of Medicine)

  • Maxim N. Artyomov

    (Washington University School of Medicine)

  • Robert D. Schreiber

    (Washington University School of Medicine
    Washington University School of Medicine
    The Parker Institute for Cancer Immunotherapy)

Abstract

The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2–4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5–9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.

Suggested Citation

  • Elise Alspach & Danielle M. Lussier & Alexander P. Miceli & Ilya Kizhvatov & Michel DuPage & Adrienne M. Luoma & Wei Meng & Cheryl F. Lichti & Ekaterina Esaulova & Anthony N. Vomund & Daniele Runci & , 2019. "MHC-II neoantigens shape tumour immunity and response to immunotherapy," Nature, Nature, vol. 574(7780), pages 696-701, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1671-8
    DOI: 10.1038/s41586-019-1671-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1671-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1671-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeppe Sejerø Holm & Samuel A. Funt & Annie Borch & Kamilla Kjærgaard Munk & Anne-Mette Bjerregaard & James L. Reading & Colleen Maher & Ashley Regazzi & Phillip Wong & Hikmat Al-Ahmadie & Gopa Iyer & , 2022. "Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Ariel Isser & Aliyah B. Silver & Hawley C. Pruitt & Michal Mass & Emma H. Elias & Gohta Aihara & Si-Sim Kang & Niklas Bachmann & Ying-Yu Chen & Elissa K. Leonard & Joan G. Bieler & Worarat Chaisawangw, 2022. "Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Jianting Long & Xihe Chen & Mian He & Shudan Ou & Yunhe Zhao & Qingjia Yan & Minjun Ma & Jingyu Chen & Xuping Qin & Xiangjun Zhou & Junjun Chu & Yanyan Han, 2024. "HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Samuel Rivero-Hinojosa & Melanie Grant & Aswini Panigrahi & Huizhen Zhang & Veronika Caisova & Catherine M. Bollard & Brian R. Rood, 2021. "Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Laurel B. Darragh & Jacob Gadwa & Tiffany T. Pham & Benjamin Court & Brooke Neupert & Nicholas A. Olimpo & Khoa Nguyen & Diemmy Nguyen & Michael W. Knitz & Maureen Hoen & Sophia Corbo & Molishree Josh, 2022. "Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Jens Bauer & Natalie Köhler & Yacine Maringer & Philip Bucher & Tatjana Bilich & Melissa Zwick & Severin Dicks & Annika Nelde & Marissa Dubbelaar & Jonas Scheid & Marcel Wacker & Jonas S. Heitmann & S, 2022. "The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Georges Bedran & Daniel A. Polasky & Yi Hsiao & Fengchao Yu & Felipe Veiga Leprevost & Javier A. Alfaro & Marcin Cieslik & Alexey I. Nesvizhskii, 2023. "Unraveling the glycosylated immunopeptidome with HLA-Glyco," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Denise Lau & Sonal Khare & Michelle M. Stein & Prerna Jain & Yinjie Gao & Aicha BenTaieb & Tim A. Rand & Ameen A. Salahudeen & Aly A. Khan, 2022. "Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. John P. Finnigan & Jenna H. Newman & Yury Patskovsky & Larysa Patskovska & Andrew S. Ishizuka & Geoffrey M. Lynn & Robert A. Seder & Michelle Krogsgaard & Nina Bhardwaj, 2024. "Structural basis for self-discrimination by neoantigen-specific TCRs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Laura Y. Zhou & Fei Zou & Wei Sun, 2023. "Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA‐I proteins," Biometrics, The International Biometric Society, vol. 79(3), pages 2664-2676, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1671-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.