IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v572y2019i7770d10.1038_s41586-019-1492-9.html
   My bibliography  Save this article

Genetic induction and mechanochemical propagation of a morphogenetic wave

Author

Listed:
  • Anaïs Bailles

    (IBDM–UMR7288
    Turing Centre for Living Systems)

  • Claudio Collinet

    (IBDM–UMR7288
    Turing Centre for Living Systems)

  • Jean-Marc Philippe

    (IBDM–UMR7288
    Turing Centre for Living Systems)

  • Pierre-François Lenne

    (IBDM–UMR7288
    Turing Centre for Living Systems)

  • Edwin Munro

    (University of Chicago)

  • Thomas Lecuit

    (IBDM–UMR7288
    Turing Centre for Living Systems
    Collège de France)

Abstract

Tissue morphogenesis arises from coordinated changes in cell shape driven by actomyosin contractions. Patterns of gene expression regionalize cell behaviours by controlling actomyosin contractility. Here we report two modes of control over Rho1 and myosin II (MyoII) activation in the Drosophila endoderm. First, Rho1–MyoII are induced in a spatially restricted primordium via localized transcription of the G-protein-coupled receptor ligand Fog. Second, a tissue-scale wave of Rho1–MyoII activation and cell invagination progresses anteriorly away from the primordium. The wave does not require sustained gene transcription, and is not governed by regulated Fog delivery. Instead, MyoII inhibition blocks Rho1 activation and propagation, revealing a mechanical feedback driven by MyoII. We find that MyoII activation and invagination in each row of cells drives adhesion to the vitelline membrane mediated by integrins, apical spreading, MyoII activation and invagination in the next row. Endoderm morphogenesis thus emerges from local transcriptional initiation and a mechanically driven cycle of cell deformation.

Suggested Citation

  • Anaïs Bailles & Claudio Collinet & Jean-Marc Philippe & Pierre-François Lenne & Edwin Munro & Thomas Lecuit, 2019. "Genetic induction and mechanochemical propagation of a morphogenetic wave," Nature, Nature, vol. 572(7770), pages 467-473, August.
  • Handle: RePEc:nat:nature:v:572:y:2019:i:7770:d:10.1038_s41586-019-1492-9
    DOI: 10.1038/s41586-019-1492-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1492-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1492-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah J. Gustafson & Nikolas Claussen & Stefano Renzis & Sebastian J. Streichan, 2022. "Patterned mechanical feedback establishes a global myosin gradient," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Stefan Harmansa & Alexander Erlich & Christophe Eloy & Giuseppe Zurlo & Thomas Lecuit, 2023. "Growth anisotropy of the extracellular matrix shapes a developing organ," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:572:y:2019:i:7770:d:10.1038_s41586-019-1492-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.