IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v572y2019i7767d10.1038_s41586-019-1423-9.html
   My bibliography  Save this article

Weak average liquid-cloud-water response to anthropogenic aerosols

Author

Listed:
  • Velle Toll

    (University of Reading
    University of Tartu)

  • Matthew Christensen

    (University of Oxford)

  • Johannes Quaas

    (Universität Leipzig)

  • Nicolas Bellouin

    (University of Reading)

Abstract

The cooling of the Earth’s climate through the effects of anthropogenic aerosols on clouds offsets an unknown fraction of greenhouse gas warming. An increase in the amount of water inside liquid-phase clouds induced by aerosols, through the suppression of rain formation, has been postulated to lead to substantial cooling, which would imply that the Earth’s surface temperature is highly sensitive to anthropogenic forcing. Here we provide direct observational evidence that, instead of a strong increase, aerosols cause a relatively weak average decrease in the amount of water in liquid-phase clouds compared with unpolluted clouds. Measurements of polluted clouds downwind of various anthropogenic sources—such as oil refineries, smelters, coal-fired power plants, cities, wildfires and ships—reveal that aerosol-induced cloud-water increases, caused by suppressed rain formation, and decreases, caused by enhanced evaporation of cloud water, partially cancel each other out. We estimate that the observed decrease in cloud water offsets 29% of the global climate-cooling effect caused by aerosol-induced increases in the concentration of cloud droplets. These findings invalidate the hypothesis that increases in cloud water cause a substantial climate cooling effect and translate into reduced uncertainty in projections of future climate.

Suggested Citation

  • Velle Toll & Matthew Christensen & Johannes Quaas & Nicolas Bellouin, 2019. "Weak average liquid-cloud-water response to anthropogenic aerosols," Nature, Nature, vol. 572(7767), pages 51-55, August.
  • Handle: RePEc:nat:nature:v:572:y:2019:i:7767:d:10.1038_s41586-019-1423-9
    DOI: 10.1038/s41586-019-1423-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1423-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1423-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael S. Diamond & Kelly Wanser & Olivier Boucher, 2023. "“Cooling credits” are not a viable climate solution," Climatic Change, Springer, vol. 176(7), pages 1-9, July.
    2. Antti Arola & Antti Lipponen & Pekka Kolmonen & Timo H. Virtanen & Nicolas Bellouin & Daniel P. Grosvenor & Edward Gryspeerdt & Johannes Quaas & Harri Kokkola, 2022. "Aerosol effects on clouds are concealed by natural cloud heterogeneity and satellite retrieval errors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:572:y:2019:i:7767:d:10.1038_s41586-019-1423-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.